Due to limited spectrum resources and differences in link loads, network congestion is one of the key issues in cognitive radio wireless mesh networks. In this letter, a congestion avoidance model with power control, channel allocation, and routing under the signal-to-interference-and-noise ratio is presented. As a contribution, a nested optimization scheme combined with a genetic algorithm and linear programming solver is proposed. Extensive simulation results are presented to demonstrate the effectiveness of our algorithm.
Multilayer mirrors have widely been used not only in the industry but also in the medical field. X-ray reflectivity was measured by X-ray diffractometer to evaluate the performance of W/C multilayer mirror with 40 layers. Genetic algorithm are used to obtain thickness, density, and interfacial roughness for each of the 40 layers. The existing uniform random selection causes a problem that the solution does not converge or the error increases even if it convergence. To reduce the time to calculate the fitness of the genetic algorithm, the genetic algorithm was written in C/C++ parallel programming. The genetic algorithm showed excellent scalability of linear time increase with increasing number of generation and population. The genetic algorithm was selected with uniform and Gaussian randomness of 1:1 to improve the convergence of solution. The improved genetic algorithm can be applied to characterize each layer of a sample with more than a few tens of layers, such as a multilayer mirror.
Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.3
/
pp.169-180
/
2015
Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.
The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.
Journal of Korean Institute of Industrial Engineers
/
v.34
no.4
/
pp.481-488
/
2008
This paper deals with a scheduling problem for two-machine flow shop, in which the preceding machine is a batch processing machine that can process a number of jobs simultaneously. To minimize makespan of the system, we present a mixed integer linear programming formulation for the problem, and using this formulation, it is shown that an optimal solution for small problem can be obtained by a commercial optimization software. However, since the problem is NP-hard and the size of a real problem is very large, we propose a number of heuristic algorithms including genetic algorithm to solve practical big-sized problems in a reasonable computational time. To verify performances of the algorithms, we compare them with lower bound for the problem. From the results of these computational experiments, some of the heuristic algorithms show very good performances for the problem.
The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.
Companies are responding appropriately to the rapidly changing business environment and striving to lead those changes. As part of that, we are meeting our strategic goals through IT projects, which increase the number of simultaneous projects and the importance of project portfolio management for successful project execution. It also strives for efficient deployment of human resources that have the greatest impact on project portfolio management. In the early stages of project portfolio management, it is very important to establish a reasonable manpower plan and allocate performance personnel. This problem is a problem that can not be solved by linear programming because it is calculated through the standard deviation of the input ratio of professional manpower considering the uniformity of load allocated to the input development manpower and the importance of each project. In this study, genetic algorithm, one of the heuristic methods, was applied to solve this problem. As the objective function, we used the proper input ratio of projects, the input rate of specialist manpower for important projects, and the equal load of workload by manpower. Constraints were not able to input duplicate manpower, Was used as a condition. We also developed a program for efficient application of genetic algorithms and confirmed the execution results. In addition, the parameters of the genetic algorithm were variously changed and repeated test results were selected through the independent sample t test to select optimal parameters, and the improvement effect of about 31.2% was confirmed.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.1
/
pp.245-251
/
2016
This paper suggests a heuristic algorithm to obtain optimal solution of minimum number of aircraft delay in multi-airport arrivals/departures problem. This single airport arrivals/departures problem can be solved by mathematical optimization method only. The linear programming or genetic algorithm that is a kind of metaheuristic method is used for a multi-airport arrivals/departures problem. Firstly, the proposed algorithm selects the median minimum delays capacity in various arrivals/departures capacities at an airport for the number of aircraft in $i^{th}$ time interval (15 minutes) at each airport. Next, we suggest reallocate method for arrival aircraft between airports. This algorithm better result of the number of delayed aircraft then genetic algorithm.
Proceedings of the Computational Structural Engineering Institute Conference
/
2004.04a
/
pp.317-324
/
2004
Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.
Kim, Kyu-Ho;Lee, Yu-Jeong;Rhee, Sang-Bong;Lee, Sang-Keun;You, Seok-Ku
Proceedings of the KIEE Conference
/
2002.07a
/
pp.127-129
/
2002
This paper presents a fuzzy-GA method to resolve dispersed generator placement for distribution systems. The problem formulation considers an objective to reduce power loss costs of distribution systems and the constraints with the number or size of dispersed generators and the deviation of the bus voltage. The main idea of solving fuzzy nonlinear goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature and solve the problem using the proposed genetic algorithm, without any transformation for this nonlinear problem to a linear model or other methods. The method proposed is applied to the sample systems to demonstrate its effectiveness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.