• Title/Summary/Keyword: linear genetic programming

Search Result 60, Processing Time 0.021 seconds

Joint Optimization for Congestion Avoidance in Cognitive Radio WMNs under SINR Model

  • Jia, Jie;Lin, Qiusi;Chen, Jian;Wang, Xingwei
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.550-553
    • /
    • 2013
  • Due to limited spectrum resources and differences in link loads, network congestion is one of the key issues in cognitive radio wireless mesh networks. In this letter, a congestion avoidance model with power control, channel allocation, and routing under the signal-to-interference-and-noise ratio is presented. As a contribution, a nested optimization scheme combined with a genetic algorithm and linear programming solver is proposed. Extensive simulation results are presented to demonstrate the effectiveness of our algorithm.

Improvement of Genetic Algorithm for Evaluating X-ray Reflectivity on Multilayer Mirror (다층박막 거울의 반사율 평가를 위한 유전 알고리즘의 개선)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • Multilayer mirrors have widely been used not only in the industry but also in the medical field. X-ray reflectivity was measured by X-ray diffractometer to evaluate the performance of W/C multilayer mirror with 40 layers. Genetic algorithm are used to obtain thickness, density, and interfacial roughness for each of the 40 layers. The existing uniform random selection causes a problem that the solution does not converge or the error increases even if it convergence. To reduce the time to calculate the fitness of the genetic algorithm, the genetic algorithm was written in C/C++ parallel programming. The genetic algorithm showed excellent scalability of linear time increase with increasing number of generation and population. The genetic algorithm was selected with uniform and Gaussian randomness of 1:1 to improve the convergence of solution. The improved genetic algorithm can be applied to characterize each layer of a sample with more than a few tens of layers, such as a multilayer mirror.

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects (작업 종속 및 위치기반 선형학습효과를 갖는 2-에이전트 단일기계 스케줄링)

  • Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.

A Study on the Optimization Design of Check Valve for Marine Use (선박용 체크밸브의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Production Scheduling for a Two-machine Flow Shop with a Batch Processing Machine (배치처리기계를 포함하는 두 단계 흐름생산라인의 일정계획)

  • Koh, Shie-Gheun;Koo, Pyung-Hoi;Kim, Byung-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.481-488
    • /
    • 2008
  • This paper deals with a scheduling problem for two-machine flow shop, in which the preceding machine is a batch processing machine that can process a number of jobs simultaneously. To minimize makespan of the system, we present a mixed integer linear programming formulation for the problem, and using this formulation, it is shown that an optimal solution for small problem can be obtained by a commercial optimization software. However, since the problem is NP-hard and the size of a real problem is very large, we propose a number of heuristic algorithms including genetic algorithm to solve practical big-sized problems in a reasonable computational time. To verify performances of the algorithms, we compare them with lower bound for the problem. From the results of these computational experiments, some of the heuristic algorithms show very good performances for the problem.

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

A Study on the Optimization Model for the Project Portfolio Manpower Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 프로젝트 포트폴리오 투입인력 최적화 모델에 관한 연구)

  • Kim, Dong-Wook;Lee, Won-Young
    • Journal of Information Technology Services
    • /
    • v.17 no.4
    • /
    • pp.101-117
    • /
    • 2018
  • Companies are responding appropriately to the rapidly changing business environment and striving to lead those changes. As part of that, we are meeting our strategic goals through IT projects, which increase the number of simultaneous projects and the importance of project portfolio management for successful project execution. It also strives for efficient deployment of human resources that have the greatest impact on project portfolio management. In the early stages of project portfolio management, it is very important to establish a reasonable manpower plan and allocate performance personnel. This problem is a problem that can not be solved by linear programming because it is calculated through the standard deviation of the input ratio of professional manpower considering the uniformity of load allocated to the input development manpower and the importance of each project. In this study, genetic algorithm, one of the heuristic methods, was applied to solve this problem. As the objective function, we used the proper input ratio of projects, the input rate of specialist manpower for important projects, and the equal load of workload by manpower. Constraints were not able to input duplicate manpower, Was used as a condition. We also developed a program for efficient application of genetic algorithms and confirmed the execution results. In addition, the parameters of the genetic algorithm were variously changed and repeated test results were selected through the independent sample t test to select optimal parameters, and the improvement effect of about 31.2% was confirmed.

Arrival-Departure Capacity Allocation Algorithm for Multi-Airport Systems (다중공항 시스템의 도착-출발 가용량 배정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.245-251
    • /
    • 2016
  • This paper suggests a heuristic algorithm to obtain optimal solution of minimum number of aircraft delay in multi-airport arrivals/departures problem. This single airport arrivals/departures problem can be solved by mathematical optimization method only. The linear programming or genetic algorithm that is a kind of metaheuristic method is used for a multi-airport arrivals/departures problem. Firstly, the proposed algorithm selects the median minimum delays capacity in various arrivals/departures capacities at an airport for the number of aircraft in $i^{th}$ time interval (15 minutes) at each airport. Next, we suggest reallocate method for arrival aircraft between airports. This algorithm better result of the number of delayed aircraft then genetic algorithm.

Shape Optimization of Laminated Composite Shell for Various Layup Configurations (적층배열에 따른 복합재료 쉘의 형상최적화)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.317-324
    • /
    • 2004
  • Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.

  • PDF

Optimal Allocation Planning of Dispersed Generation Systems in Distribution System (배전계통에서 분산형전원의 최적설치 계획)

  • Kim, Kyu-Ho;Lee, Yu-Jeong;Rhee, Sang-Bong;Lee, Sang-Keun;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.127-129
    • /
    • 2002
  • This paper presents a fuzzy-GA method to resolve dispersed generator placement for distribution systems. The problem formulation considers an objective to reduce power loss costs of distribution systems and the constraints with the number or size of dispersed generators and the deviation of the bus voltage. The main idea of solving fuzzy nonlinear goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature and solve the problem using the proposed genetic algorithm, without any transformation for this nonlinear problem to a linear model or other methods. The method proposed is applied to the sample systems to demonstrate its effectiveness.

  • PDF