• Title/Summary/Keyword: linear genetic programming

Search Result 60, Processing Time 0.023 seconds

Application of an Optimization Method to Groundwater Contamination Problems

  • Ko, Nak-Youl;Lee, Jin-Yong;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.24-27
    • /
    • 2002
  • The optimal designs of groundwater problems of contaminant containment and cleanup using linear programming and genetic algorithm are provided. In the containment problem, genetic algorithm shows the superior feature to linear programming. In cleanup problem, genetic algorithm makes reasonable optimal design. Un this study, it is demonstrated through numerical experiments that genetic algorithm can be applied to remedial designs of groundwater problems.

  • PDF

Optimal proportioning of concrete aggregates using a self-adaptive genetic algorithm

  • Amirjanov, Adil;Sobol, Konstantin
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.411-421
    • /
    • 2005
  • A linear programming problem of the optimal proportioning of concrete aggregates is discussed; and a self-adaptive genetic algorithm is developed to solve this problem. The proposed method is based on changing a range of variables for capturing the feasible region of the optimum solution. A computational verification of this method is compared with the results of the linear programming.

A GENETIC ALGORITHM BASED ON OPTIMALITY CONDITIONS FOR NONLINEAR BILEVEL PROGRAMMING PROBLEMS

  • Li, Hecheng;Wang, Yuping
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.597-610
    • /
    • 2010
  • For a class of nonlinear bilevel programming problems in which the follower's problem is linear, the paper develops a genetic algorithm based on the optimality conditions of linear programming. At first, we denote an individual by selecting a base of the follower's linear programming, and use the optimality conditions given in the simplex method to denote the follower's solution functions. Then, the follower's problem and variables are replaced by these optimality conditions and the solution functions, which makes the original bilevel programming become a single-level one only including the leader's variables. At last, the single-level problem is solved by using some classical optimization techniques, and its objective value is regarded as the fitness of the individual. The numerical results illustrate that the proposed algorithm is efficient and stable.

Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding (조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발)

  • Lee, Kyung-Ho;Yeun, Yun-Seog;Yang, Young-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

Development of a Genetic Algorithm for the optimization in River Water Quality Management System (하천 수질관리 시스템에서 최적화를 위한 유전알고리즘의 개발)

  • 성기석;조재현
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.203-206
    • /
    • 2001
  • Finding the optimal solution in the river water quality management system is very hard with the non-linearity of the water quality model. Many suggested methods for that using the linear programming, non-linear programming and dynamic programming, are failed to give an optimal solution of sufficient accuracy and satisfaction. We studied a method to find a solution optimizing the river water quality management in the aspect of the efficiency and the cost of the waste water treatment facilities satisfying the water Quality goals. In the suggested method, we use the QUAL2E water quality model and the genetic algorithm. A brief result of the project to optimize the water quality management in the Youngsan river is presented.

  • PDF

Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems (가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용)

  • 연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H.;Alavi, A.H.;Yun, G.J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.1-25
    • /
    • 2011
  • A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model (밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델)

  • Kim, Young-Kyun;Kwon, Oh-Sung;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.780-785
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection and tracking. Existing color detection methods have used linear/nonlinear transformatin of RGB color-model and improved color model for illumination variation by optimization or learning techniques. However, most of cases have difficulties to classify various of colors because of interference of among color channels and are not robust for illumination variation. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various colors and images with different lighting conditions.

Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm (유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정)

  • Jeong, Gwang-Sik;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.473-486
    • /
    • 2001
  • The WGR model was developed to represent meso-scale precipitation. As a conceptual model, this model shows a good link between atmospheric dynamics and statistical description of meso-scale precipitation(Waymire et al., 1984). However, as it has maximum 18 parameters along with its non-linear structure, its parameter estimation has been remained a difficult problem. There have been several cases of its parameter estimation for different fields using non-linear programming techniques(NLP), which were also difficult tasks to hamper its wide applications. In this study, we estimated the WGR model parameters of the Han river basin using the genetic algorithm(GA) and compared them to the NLP results(Yoo and Kwon, 2000). As a result of the study, we can find that the sum of square error from the GA provide more consistent parameters to the seasonal variation of rainfall. Also, we can find that the higher rainfall amount during summer season is closely related with the arrival rate of rain bands, not the rain cell intensity.

  • PDF