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A GENETIC ALGORITHM BASED ON OPTIMALITY
CONDITIONS FOR NONLINEAR BILEVEL PROGRAMMING
PROBLEMS

HECHENG LI* AND YUPING WANG

ABSTRACT. For a class of nonlinear bilevel programming problems in which
the follower’s problem is linear, the paper develops a genetic algorithm
based on the optimality conditions of linear programming. At first, we
denote an individual by selecting a base of the follower’s linear program-
ming, and use the optimality conditions given in the simplex method to
denote the follower’s solution functions. Then, the follower’s problem and
variables are replaced by these optimality conditions and the solution func-
tions, which makes the original bilevel programming become a single-level
one only including the leader’s variables. At last, the single-level problem
is solved by using some classical optimization techniques, and its objective
value is regarded as the fitness of the individual. The numerical results
illustrate that the proposed algorithm is efficient and stable.
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1. Introduction

The bilevel programming problem (BLPP) can be viewed as a static ver-
sion of the noncooperative, two-person game introduced by Von Stackelberg in
the context of unbalanced economic markets[14], as a result, it is also known
as Stackelberg problem. This kind of problems involve two optimization prob-
lems at different levels, in which the feasible region of one optimization problem
(leader’s problem/upper level problem) is implicitly determined by the other (fol-
lower’s problem/lower level problem). The general bilevel programmmg problem
can be formulated as follows
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where © € R",y € R™; The variables of problem (1) are divided into two
classes, namely the leader’s variables x and the follower’s variables y. Similarly,
F(f): R® x R™ — R is called the leader’s (follower’s) objective function, while
the vector-valued functions G : R* x R™ — RP and g : R" x R™ — RY are
called the leader’s and follower’s constraints respectively. The sets X and Y
place additional constraints on the variables, such as upper and lower bounds
or integrality requirements etc. This mathematical programming model arises
when two independent decision makers, ordered within a hierarchical structure,
have conflicting objectives, and each decision maker seeks to optimize his/her
objective function. In model(1), The leader moves first by choosing a vector
z € X C R™ in an attempt to optimize his/her objective function F'(z,y); the
leader’s choice of strategies affects both the follower’s objective and decision
space. The follower observes the leader’s choice and reacts by selecting a vector
y € Y C R™ that optimize his/her objective function f(z,y). In doing so, the
follower affects the leader’s outcome.

BLPP is widely used to lots of fields such as economy, control, engineering
and management[2, 5], and more and more practical problems can be formu-
lated as the bilevel programming models, so it is important to design all types
of effective and efficient algorithms to solve different types of BLPPs. But due
to its nested structure, BLPP is intrinsically difficult, it has been reported that
BLPP is strongly NP-hard[2]. When all functions involved are linear, BLPP
is called linear bilevel programming. It is the simplest one among the family
of BLPPs, and the optimal solutions can occurs at vertices of feasible region.
Based on these properties, lots of algorithms are proposed to solve this kind of
problems|2, 3, 7, 17). When the functions involve nonlinear terms, the corre-
sponding problem is called nonlinear BLPP, which is more complex and chal-
lenging than linear one. To date, some exact algorithms have been developed for
some special cases of nonlinear bilevel programs|[1, 2, 4, 5, 6, 8, 10, 13, 15, 16, 19],
and some intelligent algorithms, such as evolutionary algorithms(EAs)/genetic
algorithms(GAs)[9, 11, 16, 18], tuba search approaches[12], etc, have been ap-
plied to obtain the optimal solutions of nonlinear BLPPs. However, Amongst
the algorithms, some involve the application of enumerative methods, while oth-
ers replace the follower’s problem with its K-K-T conditions or apply penalty
function methods. But all of them are very time consuming, especially when
the follower’s problem is large. In order to overcome the disadvantage, the pa-
per is devoted to designing an algorithm which can reduce the computational
complexity caused by the follower’s solution.
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In this paper we consider a special class of nonlinear BLPP, in which the
leader’s functions are convex in all variables, and the follower’s programming is
linear. The paper develops a genetic algorithm based on the optimality condi-
tions of linear programming(LP). The algorithm aims to combine an extreme
point enumeration technique in the follower’s problem with the optimization of
the leader’s problem. At first, we denote an individual by selecting a base of the
follower’s linear programming, and use the optimality conditions given in the
simplex method to denote the follower’s solutions which are functions of leader’s
variables. Then, the follower’s problem and variables are replaced by these
optimality conditions and solution functions, which makes the original BLPP
become a single-level convex programming only including the leader’s variables.
At last, the single-level problem is solved by using some classical optimization
techniques, and its objective value is regarded as the fitness of the individual.

This paper is organized as follows. The model of the bilevel programming
problem and some notations are presented in Section 2, and a genetic algorithm
is given based on the optimality conditions in Section 3. Experimental results
and comparison are presented in Section 4. We finally conclude our paper in
Section 5.

2. Discussed model and basic notations

Let us consider the bilevel programming problem defined as follows

( min F
min F(z,y)

st. G(z,y) <0
min f(z,y) = C(2)y
st Uz +Vy+W <0,y >0.

(2)

where F, G are convex and twice continuously differential in all variables (z, y),
the vector-valued function C(z) = (c1(z),c2(z),...,cm(z)) , here c;j(x),i =
1,2,...,m, are linear in z. U is a ¢ X n-matrix, V is a ¢ X m-matrix, and
W e RY. X and Y are box sets as follows:

X={(:1:1,x2,...,.1:n)TER"l:cie [liyuwi],i=1,2,...,n}

Y={(y1ay27'°'7ym)TERm I Y; € [l_],'l_lg],j= 1,2,...,m}

where [;, u;, l—j, u; are all real constants.

Now we introduce some related definitions and notations[2] as follows.

1) Search space: Q = {(z,y)|z € X,y € Y}.

2) Constraint region: S = {(z,y) € Q|G(z,y) <0,Uz+Vy+ W <0,y > 0}.

3) Feasible region of follower’s problem for z fixed: S(z) = {y € Y|Uz+Vy+
W <0,y >0}

4) Projection of S onto the leader’s decision space: S(X) = {z € X|3y, (z,y) €
S}.
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5) Follower’s rational reaction set for each z € S(X): M(z) ={y € Y|y €
argmin{C(z)v,v € S(z)}}.

6) Inducible region: IR = {(z,y) € S|y € M(z)}.

In terms of aforementioned definitions, problem (2) can also be written as:

min{ F(z,y)|(z,y) € IR}

In order to ensure that problem (2) is well posed, in the remainder, we always
assume that

A1l: S is nonempty and compact.

A2: For all decisions taken by the leader, each follower has some room to
react, that is, S(z) # ¢.

A3: The follower’s problem has unique optimal solution for each fixed z.

A4: The rank of matrix V is q.

Since y € Y can be written as linear constraints, for the purpose of simplicity,
we always omit the additional restrict in the remainder sections.

3. Solution method

For nonlinear BLPP, the existing algorithms can be divided into two classes.
One always begins with leader’s variables, at first, an x € X is selected, then for
the fixed z, follower’s problem is solved to obtain y. In this process, the leader
always tries to optimize his/her objective value by searching z. While the other
uses some techniques to transform BLPP into a single level programming, such
as penalty functions or K-K-T conditions. When the follower’s programming
is a large-scale problem, these algorithms are time-consuming. We try to solve
the problem from another angle. At first, we encode each individual by using
the potential base of follower’s programming, that is, a base corresponds to an
individual. When the base is optimal and feasible for some z, the optimality
conditions and the follower’s solutions can be denoted by the linear inequalities
and functions of z, respectively. Then the follower’s programming can be re-
placed by these optimality conditions, and the y in the leader’s problem can also
be replaced by the solution functions. As a result, the original BLPP can be
transformed into a single level programming without follower’s variables, which
is different from the single level programming obtained by using K-K-T con-
ditions or penalty function methods, since the two techniques can’t eliminate
follower’s variables. Next we describe in more details the steps of the algorithm.

3.1. Chromosome encoding

The follower’s problem of (2) can be re-written as:

mzinf(x, z) =C(z)z
{ s.t. Az = b(x),z > 0. )

where A = (V,I),b(z) = -W — Uz, z = (y7,yd)T € R™*9, C(z) = (C(x),0),
and yo is a slack vector.
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Arbitrarily select a base B of problem (3), we denote the indices of basic
variables by i1,12,...,%, and set 4; < ia < --- < 1. Then an individual can be
represented by (0,...,0,1,0,...,0,...,0,1,0,...,0), i.e. the i;th component of
the individual is 1, 7 = 1, ..., q, while others are 0.

3.2. Fitness evaluation

For each individual { = (0,...,0,1,0,...,0,...,0,1,0,...,0), the correspond-
ing basic matrix is denoted by B. According to the theory of the simplex method,
if there exists at least an x € X such that the inequalities

B7'b(z) >0
{ ) (4)
C(z) - Cp(z)B~ A 20

hold, where Cg(z) are the components of C(z) corresponding to basic variables,
then for each z satisfying (4), B~'b(x) provides an optimal solution z(z) =
(y(z), yo(z)) to the follower’s problem, in which the basic variable values of the
solution are taken as B~1b(z), while the values of nonbasic variables are 0. As
a result, a single level programming is got as follows

( min F(z, y(z))

s.t. G(z,y(z)) <0
B7lb(z) >0

| C(z) ~ Cg(z)B™1A >0

(5)

It is easily seen that problem (5) can be solved in a finite number of steps since
it is convex. If problem (5) has a solution, then the objective value F(z,y(z))
is the fitness of individual | and [ is called a feasible individual; otherwise, [ is
called an unfeasible individual, and we set its fitness value be large enough.

3.3. Crossover and mutation operators

Let | =(0,...,1,0,...,1,...,1,...,0) be a selected parent for crossover. We
choose randomly a component 1 of [, and change it to 0. In order to keep the
number of basic variables unchanged, we choose randomly a component 0 of [,
and change it to 1. The resulting individual is called the crossover offspring of .

Let I =(0,...,1,0,...,1,...,1,...,0) be a selected parent for mutation. We
first denote indices of component 1 in ! by ti,tg,- - ytg, and set 1 < ¢ <
ty-- <ty < (m+q). Further, we take integers I,y € [1,t2), lo; € [tj,tj+1),
where j = 2,---,g~ 1, and ioq € [tg:tm+q]. At last, the mutation offspring l
of I can be got by taking the l,;-th component as 1,3 = 1,2,---,¢, and other
components as 0.

Evidently, the crossover operator is designed to search extreme points adjacent
to that represented by [, while the mutation operator is to search some points
far away from the point represented by .

3.4. A technique for B!
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It should be noted that for large scale linear programming, if the traditional
method is used to get B™!, it will cause a large amount of computation. So it
is necessary to develop an efficient technique to overcome the disadvantage. It
is well-known that the crossover probability, generally speaking, is much larger
than the mutation probability, therefor, the crossover can generate most offspring
while the mutation operator generates a small number of offspring. As a result,
we are devoted to finding a method to get B~! for the crossover offspring. At
first, in the initial population, for each individual, one has to use traditional
methods to get B~!. But for the crossover offspring, we can get the B~! from
the inverse matrix associated with the crossover parent.

Let [ be a parent for crossover, !’ is its crossover offspring, and

ay; a1z ... Gim4yq
as1 a4z ... Q2

A — m-+q
qu aq2 A &q7n+g

with any loss of generality, let the base corresponding to [ be B and

/ / '

ay; a2 ... Qiq a7 Qg ... alq
/ / ’
az1 422 ... 4z - 4 a R /

B = q , B 1 _ 21 22 2q
a a / ’ ’

ql an P qq aql aq2 .o a/qq

Let B’ be a base corresponding to ', and with any loss of generality, set

a1y .. OG14-1 Q1441 ... Qlg Q15
B = aziy ... Q24-1 Q42441 ... Q2q Qa2
aq]_ e a/q’zm]_ aq,z+1 PN a/qq a/q_?

where 1 < i < qand g <j < m+q. Then B'~! can be got by using following
algorithm.

Algorithm 1

Step 1. Compute A = B~ la ;, where a; is the j-th column of A. Set Al =

(Ajy oo, )\qj)T. If Aij =0, then B’ is singular; otherwise, return to Step 2;

Step 2. Let A = (e1,...,€i—1, A, €i41,-..,€q), Wwhere e; € R? is the j-th column
N . . 3 A1s Aiﬂ Lj Al . .

of unit matrix, j =_1, cey Q. A= (—-/\—lij, . ..,—-—/\T;i, 3‘1;, ——ﬁ—i : '*"X%)T’

Step 3. Compute B’ = AB™1;

Step 4. B'™1 = (b, ..., by by ..., 0, b )T, where b] is the i-th row of

B.

3.5. Genetic algorithm based on the optimality conditions(GA /OC)

Step 1. (Initialization) Randomly generate N initial points {I' € R™"9|i =
1,2,---, N}, in which only ¢ components are 1 for each I*, while other compo-
nents are 0. All of the points /¢ form the initial population pop(0) with population
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size N. Let k£ = 0.

Step 2. (Fitness) Evaluate the fitness value F'(z,y) of each point in pop(k).
Step 3. (Crossover) Let the crossover probability be p.. For each [ € pop(k), we
first take a r € [0, 1] at random, if r < p,, then execute the crossover on [ to get
its offspring l,. Let O1 stand for the set of all these offspring.

Step 4. (Mutation) Let the mutation probability be p,,. For each I’ € pop(k),
we first take a r € [0, 1] at random, if 7 < p,,, then execute the mutation on !’
to get its offspring I.. Let O2 stand for the set of all these offspring.

Step 5. (Selection) Let O = 01U O2. Evaluate the fitness values of all points
in O. Select the best N; points from the set pop(k) U O and randomly select
N — Nj points from the remaining points of the set. These selected points form
the next population pop(k + 1).

Step6. If the termination condition is satisfied, then stop; otherwise, let £ = k41,
go to Step 3

Remark 1. Compared with the algorithms which begin with the upper-level
problem or use K-K-T conditions to replace the follower’s problem, the proposed
GA/OC shows at least three advantages:

1). GA/OC has much smaller search space than these algorithms do, since
the number of the extreme points is not larger than C7,,,.

2). When the fitness value is computed, the traditional optimization tech-
nique is incorporated to GA/OC, which improve the local search ability of the
algorithm.

3). Since GA/OC begins with the follower’s problem and can obtain its
optimal solution easily, it is more efficient than the existing algorithms for BLPPs
with large-scale follower’s problems.

4. Simulation results

In order to analyze the performance of GA/OC, a computational experiment
is performed. With this experiment we aim to show the efficiency of our method
in terms of the quality of the solution, including the first objective function value
and the computational time involved. The computational study is divided into
two parts. The first part is devoted to studying the effect of different parameters
of the algorithm on the quality of the solution, and selecting the most efficient
configuration for the proposed algorithm. Once this configuration is chosen, the
second part of the study goes on to measure how good the obtained solutions
are, and compare the algorithm with other existing ones.

4.1. Test problems and configuration of parameters

In this subsection, the values of crossover probability and mutation probability
as well as population size are given at two different levels. In order to find out
the most efficient configuration of parameters for the proposed algorithm, we
have to run the algorithm with every group of parameter values on different test
problems. For this purpose, we must first construct some BLPPs satisfying the
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TABLE 1. Test problem dimensions for linear case

G1 G2 G3
n|m|q{n|m|q|n| m}|gqg
28 124 {12 |42 |36 |18 | 70| 60 | 30
28132204248 30|70 80 | 50
28 144 |32 |42 |66 | 48| 70| 110 | 80
20132112 |30{48 18|50 | 80 | 30
20 {40 |20 |30 |60 |30 | 50| 100 | 50
2052|132 (30|78 |48 50| 130 | 80
8 44112 ]12 )66 ) 18] 20 110 | 30
8 5212012 |78 30|20 130 |50
8 | 6432|1296 |48 |20 160 | 80

proposed conditions. The constructed problems are divided into two types, one
is linear BLPP and the other is nonlinear convex BLPP with linear follower’s
problem(for the purpose of simplicity, the follower’s constraints are taken as
equations). At first, the linear BLPPs are were randomly generated using the
MATLAB environment according to the methods given in [3], in which the test
problems are divided into 3 groups denoted by G1, G2 and G3, as shown in
Table 1. There are 9 test problems for each group, and total 27 test problems
are constructed according to Table 1.

For nonlinear cases, all functions are generated by using the same techniques
as above except for the leader’s objective function. We generate a leader’s ob-
jective formulated as

1
F(z,y) = §LETHSL‘ + Ky

where H = (h;j)nxn is a positive definite matrix, and each element in H is taken
randomly in (0,10); K is generated from a uniform distribution on (10, 10).
The dimensions of these test problems are given at different levels, as shown in
Table 2.

In Table 2, the test problems are also divided into three groups with respective
50, 100 and 150 variables, denoted by G1, G2 and G3. For each group, we build
test problems as follows, the numbers of follower’s variables are 40%, 60% and
80% of the total (n + m) of all variables, respectively; while the numbers of
linear constraints are 40%, 60% and 80% of the total m of follower’s variables,
respectively.

Note that we constructed two types of test problems, linear BLPPs and non-
linear convex BLPPs with linear follower’s problems. In order to find out the
more efficient configuration of parameters for GA/OC, for each parameter, two
levels are taken into account, that is, the crossover probability p. = 0.8 and 0.5;
the mutation probability p,, = 0.5 and 0.2; and the population size N = 100
and 50. For each level (parameter value) combination we execute GA/OC on
two types of the test problems generated according to G1, linear and nonlinear
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TABLE 2. Test problem dimensions for nonlinear case

Gl:n+m=50| G2:n+m=100| G3:n+m =150
n| m q n| m q n| m q
30 | 20 8 60 | 40 16 90 | 60 24
30| 20 12 60 { 40 24 90 | 60 36
30 | 20 16 60 | 40 32 90 | 60 48
20 | 30 12 40 | 60 24 60 | 90 36
20 | 30 18 40 | 60 36 60 | 90 54
20 | 30 24 40 | 60 48 60 | 90 72
10 | 40 16 20 | 80 32 30 | 120 48
10 | 40 24 20 | 80 48 30| 120 72
10 | 40 32 20 | 80 64 30 | 120 96

TABLE 3. Results at different levels of parameters

ST
No. | pc | pm | population size | linear case | nonlinear case | total
1 0.5 0.2 50 45 45 90
2 {05] 02 100 40 42 82
3 [05] 05 50 39 38 77
4 105 0.5 100 44 43 87
5 [08] 0.2 50 38 45 83
6 |[08]| 0.2 100 37 37 74
7 108 0.5 50 36 30 66
8 |08 05 100 36 41 77
340 330 320 )
«» 330 325 319
[0}
E 320
$ 320 318
[0)]
3 315
»
310 310 317
3002 0.6 08 % 0.5 ™ 80 100
Crossover probability Mutation probability Population size

FIGURE 1. Success times at different levels of parameters in
total 360 runs

BLPPs, and for each problem GA/OC runs 5 times independently. When total
10000 individuals are searched, the algorithm stops. After doing so, for each
combination of levels total 2(types)x 9 (problems with different dimensions) x
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‘ ANOVA Table
Zource A dar W3 F Prob>F A§
Coluans 0. 0LLES l D.DLLES 1.28 D. 2632
Eccor b. 48295 52 D, 0DDER
Tolal 0. 4948 53 :

FIGURE 2. Analysis of variance for SR provided by GA/OC and GABB

5 (running times) problems are solved. In order to measure the performance of
GA/OC, for each test problem and level combination we define as a success, the
fitness value being equal to the best value obtained in all dependent runs. e.g.
if there are 4 minimal fitness values in 5 runs, the success times(ST) is 4, and
the success rate(SR) is 0.8. Table 3 shows the success times for each type and
level combination.

In order to illustrate graphically the influence of factors, based on the data
in Table 3, we calculate the totals of ST for each level of parameters, e.g. for
the crossover probability p. = 0.5, the total of ST is 336 (90 + 82 + 77 + 87).
Fig 1 displays the plot of ST at different levels for each parameter, which means
the three parameters are significant, especially, the crossover and mutation op-
erators, since they show the evident difference at different levels. But one can’t
select the parameter values only according to Flig. 1, since it does not include the
influences of interaction among the parameters. In fact, based on the statistics,
it is reasonable to select a level combination with the maximal ST according to
Table 3. As a result, we select p, = 0.5, p,,, = 0.2, and N = 50.

4.2. Results and discussion

For all constructed test problems, linear and nonlinear ones, We execute
GA/OC in 10 independent runs on each problem on a computer(Intel Pentium
IV-2.66GHz), and record ST as well as SR. It means GA/OC is executed 2
(types)x 3(groups)x9 (problem number in each group)x10 (run times) times.
For the linear case, [3] gave an efficient algorithm called GABB, and set the
stopping condition at 200,300,and 300 iteration for G1, G2, and G3, respec-
tively. Based on the parameter values (p. = 0.5,p,, = 0.25, N = 100) given
in [3], one can know that GABB generated at least the mean of 20000 sam-
ple points (=100(population size) x 0.5 (crossover probability)x2 (crossover
offspring) x 200 (generations)) for G1, and the mean of 30000 sample points
(=100(population size) x 0.5(crossover probability)x 2 (crossover offspring) X
300 (generations)) for G2 and G3, respectively. We stop GA/OC when 10000
individuals are generated for G1, while for G2 and G3, the value is 30000. All
data are shown in Table 4 and 5.

From Table 4, GA/OC can give a higher rate of success for G1 ,G2, and G3,
as did GABB. It means GA/OC is stable and reliable in solving large-scale linear
BLPPs. In order to compare the performance of the two algorithms, we make an
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TABLE 4. Comparison of the results for linear BLPPs with dif-

ferent dimensions

SR(ST)
No. | Group | Dim. & Cons. | CPU(s) | GA/OC | GABB
1 Gl | 28-24_12 25 | 1.00(10) | 0.97
2 Gl 28 —32 — 20 39 1.00(10) 0.97
3 G1 28 — 44 — 32 54 1.00(10) 0.93
i | Gl | 20-32-12 26 | 1.00(10) | 0.97
5 | GI | 20-40—20 38 | 1.00(10) | 1.00
6 G1 20 — 52 — 32 o6 1.00(10) 0.93
7 | Gl 8§_44_12 97 | 1.00(10) | 1.00
8 G1 8 —-52—-20 37 1.00(10) 1.00
9 | a1 8 — 64— 32 53 | 1.00(10) | 0.90
10 G2 42 — 36 — 18 107 1.00(10) 0.97
11 G2 42 — 48 — 30 150 1.00(10) 0.93
12 G2 42 - 66 — 48 229 1.00(10) 0.87
13 G2 30 —48 — 18 100 1.00(10) 0.90
14 | G2 | 30-60—30 | 150 | L00(10) | 0.97
15 | G2 | 30—78—48 | 220 | 1.00(10) | 0.83
16 | G2 | 12-66—13 99 | 1.00(10) | 0.93
7 | G2 | 12=78—30 153 | 1.00(10) | 0.93
18 G2 12 — 96 — 48 224 1.00(10) 0.90
19 | G3 | 70-60—230 153 | 0.70(7) | 0.90
20 G3 70 — 80 — 50 236 0.90(9) 1.00
21 | G3 | 70-110-80 | 372 | 0.70(7) | 0.90
22 G3 50 — 80 — 30 147 1.00(10) 0.90
23 G3 50 — 100 - 50 224 0.60(6) 0.70
24 G3 50 — 130 — 80 367 0.70(7) 0.90
55 | G3 | 20—110—-30 | 117 | 1.00(10) | 0.90
26 G3 20 - 130 — 50 222 1.00(10) 0.80
57 | G3 | 20-160—-80 | 402 | 1.00(10) | 0.90

607

analysis of variances for the last two columns in Table 4. The results are shown
in Fig.2, since p = 0.2638 > 0.05, the algorithm, as a factor, has no significant
effect on SR, which means GA/OC has the same efficiency as GABB at least on
solving linear BLPPs. Fig. 3 displays the boxplot of SR.

Table 5 displays the results for the 27 constructed nonlinear BLPPs. One can
see that GA/OC gave more uniform results for all problems, especially for G1

and G2. It should be noted that GABB can’t solve the type of BLPPs.

Fig.4 shows the relationship between the CPU time and the scale of prob-
lems. We can see that GA/OC needs less time for solving the problems in G1,
regardless of linear or nonlinear cases.

5. Conclusion



608

Hecheng Li and Yuping Wang

—

Column Number

FIGURE 3. Boxplot for SR provided by GA/Oc and GABB
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F1GURE 4. CPU time used by GA/OC for linear and nonlinear cases

For the nonlinear bilevel programming problems with convex leader’s func-
tions and linear follower’s problem, we propose a genetic algorithm based on the
optimality conditions of LP(GA/OC). It is evident that for the linear BLPPs,
GA/OC has the same efficiency as the compared algorithm, but GA/OC can also
solve efficiently the nonlinear BLPPs with convex leader’s functions, especially

10 15 20
No. of test problems

when the follower’s problem is a large-scale LP.
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TABLE 5. Results for nonlinear BLPPs with different dimensions

Group | Dim. & Cons. | CPU(s) | SR | ST

No.
1 G1 30 —20—-8 22 1.00 | 10
2 G1 30 —20-—12 32 1.00 | 10
3 G1 30 —20-16 54 1.00 { 10
4 G1 20—30—12 17 1.00 | 10
5 G1 20 — 30 — 18 24 1.00{ 10
6 G1 20—-30—24 49 1.00 | 10
7 G1 10 —40 — 16 19 1.00 | 10
8 G1 10—-40—24 26 1.00 | 10
9 G1 10 — 40 — 32 38 1.00 | 10
10 G2 60 — 40 — 16 80 1.00 | 10
11 G2 60 —40 — 24 116 090 9
12 G2 60 — 40 — 32 235 1.00 ] 10
13 G2 40— 60— 24 81 1.00 | 10
14 G2 40 - 60 — 36 119 070 7
15 G2 40 — 60 — 48 174 080 8
16 G2 20 — 80 — 32 95 1.00 | 10
17 G2 20 — 80 — 48 145 1.00 ] 10
18 G2 20 — 80 — 64 208 1.00 | 10
19 G3 90 — 60 — 24 129 1.00 | 10
20 G3 90 — 60 — 36 189 080 8
21 G3 90 — 60 — 48 304 070 | 7
22 G3 60 — 90 — 36 124 09| 9
23 G3 60 — 90 — 54 186 070 | 7
24 G3 60 — 90 — 72 277 070 | 7
25 G3 30 — 120 — 48 148 070 | 7
26 G3 30 — 120 — 72 244 08| 8
27 G3 30— 120 - 96 346 070 | 7
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