• 제목/요약/키워드: linear genetic programming

검색결과 60건 처리시간 0.029초

Application of an Optimization Method to Groundwater Contamination Problems

  • Ko, Nak-Youl;Lee, Jin-Yong;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.24-27
    • /
    • 2002
  • The optimal designs of groundwater problems of contaminant containment and cleanup using linear programming and genetic algorithm are provided. In the containment problem, genetic algorithm shows the superior feature to linear programming. In cleanup problem, genetic algorithm makes reasonable optimal design. Un this study, it is demonstrated through numerical experiments that genetic algorithm can be applied to remedial designs of groundwater problems.

  • PDF

Optimal proportioning of concrete aggregates using a self-adaptive genetic algorithm

  • Amirjanov, Adil;Sobol, Konstantin
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.411-421
    • /
    • 2005
  • A linear programming problem of the optimal proportioning of concrete aggregates is discussed; and a self-adaptive genetic algorithm is developed to solve this problem. The proposed method is based on changing a range of variables for capturing the feasible region of the optimum solution. A computational verification of this method is compared with the results of the linear programming.

A GENETIC ALGORITHM BASED ON OPTIMALITY CONDITIONS FOR NONLINEAR BILEVEL PROGRAMMING PROBLEMS

  • Li, Hecheng;Wang, Yuping
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.597-610
    • /
    • 2010
  • For a class of nonlinear bilevel programming problems in which the follower's problem is linear, the paper develops a genetic algorithm based on the optimality conditions of linear programming. At first, we denote an individual by selecting a base of the follower's linear programming, and use the optimality conditions given in the simplex method to denote the follower's solution functions. Then, the follower's problem and variables are replaced by these optimality conditions and the solution functions, which makes the original bilevel programming become a single-level one only including the leader's variables. At last, the single-level problem is solved by using some classical optimization techniques, and its objective value is regarded as the fitness of the individual. The numerical results illustrate that the proposed algorithm is efficient and stable.

조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발 (Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding)

  • 이경호;연윤석;양영순
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

하천 수질관리 시스템에서 최적화를 위한 유전알고리즘의 개발 (Development of a Genetic Algorithm for the optimization in River Water Quality Management System)

  • 성기석;조재현
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2001
  • Finding the optimal solution in the river water quality management system is very hard with the non-linearity of the water quality model. Many suggested methods for that using the linear programming, non-linear programming and dynamic programming, are failed to give an optimal solution of sufficient accuracy and satisfaction. We studied a method to find a solution optimizing the river water quality management in the aspect of the efficiency and the cost of the waste water treatment facilities satisfying the water Quality goals. In the suggested method, we use the QUAL2E water quality model and the genetic algorithm. A brief result of the project to optimize the water quality management in the Youngsan river is presented.

  • PDF

가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용 (Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems)

  • 연윤석
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H.;Alavi, A.H.;Yun, G.J.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.1-25
    • /
    • 2011
  • A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델 (Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model)

  • 김영균;권오성;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.780-785
    • /
    • 2010
  • 본 논문은 물체인식이나 영상추적에 사용되는 컬러검출을 위한 GP(Genetic Programming) 기반의 컬러검출 모델을 제안한다. 기존의 컬러검출은 기본적인 RGB 모델에 대한 선형, 비선형 함수의 변환을 사용하거나, 최적화 기법이나 학습기법에 의해 조명 변화에 개선된 컬러 모델을 사용하고 있다. 하지만 대부분의 경우 색상 채널간의 간섭에 의해 다양한 색상에 대한 분류가 어렵고, 조명변화에 강인하지 못하다. 본 연구에서는 GP의 최적화된 학습기법과 모델 생성 기법을 통해 조명변화에 강인하고, 다중의 색상 검출이 가능하며, 파라미터 설정이 필요 없는 컬러 모델을 제안한다. 제안된 방법을 다양한 색상과 조명환경이 다른 영상에 대해서 기존 컬러모델과 비교 분석하였다.

유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정 (Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm)

  • 정광식;유철상;김중훈
    • 한국수자원학회논문집
    • /
    • 제34권5호
    • /
    • pp.473-486
    • /
    • 2001
  • WGR 강우모형은 중규모 정도의 강우를 표현하기 위해 개발된 개념적인 모형으로 대기의 동역학적 특성과 강우의 통계학적 특성이 비교적 잘 반영된 모형이다(Waymire 등, 1984). 그러나 이 모형은 최대 18개의 매개변수르 가지며 모형의 구조가 강한 비선형성을 가지고 있어 매개변수 추정이 매우 어려운 문제로 남아 있다. 지금까지 각각 다른 지역의 강우에 대해 비선형 최적화 기법(non-linear programming; NLP)을 이용하여 매개변수를 추정한 예가 있으나 그 과정 자체가 매우 복잡하여 이 모형을 다른 목적으로 이용하는데 문제로 지적되고 있다. 본 연구에서는 유전자 알고리즘(genetic algorithm; GA)을 이용한 WGR 모형의 매개변수 추정법을 제시하였으며, 이를 한강유역에 적용하여 NLP에 의한 결과 (Yoo와 Kwon, 2000)와 비교하였다. 적용 결과 GA는 NLP에 비해 상대적으로 작은 SSE(sum of square error)를 나타내었고 계절의 변화에 보다 일관적인 반응을 보임을 알 수 있었다. 또한 추정된 매개변수 분석결과, 여름철의 높은 강우량은 강우 세포의 강도보다는 강우전선의 도달율과 밀접한 관계가 있는 것으로 나타났다.

  • PDF