• Title/Summary/Keyword: linear feature

Search Result 785, Processing Time 0.029 seconds

Improved $(2D)^2$ DLDA for Face Recognition (얼굴 인식을 위한 개선된 $(2D)^2$ DLDA 알고리즘)

  • Cho, Dong-Uk;Chang, Un-Dong;Kim, Young-Gil;Kim, Kwan-Dong;Ahn, Jae-Hyeong;Kim, Bong-Hyun;Lee, Se-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.942-947
    • /
    • 2006
  • In this paper, a new feature representation technique called Improved 2-directional 2-dimensional direct linear discriminant analysis (Improved $(2D)^2$ DLDA) is proposed. In the case of face recognition, thesmall sample size problem and need for many coefficients are often encountered. In order to solve these problems, the proposed method uses the direct LDA and 2-directional image scatter matrix. Moreover the selection method of feature vector and the method of similarity measure are proposed. The ORL face database is used to evaluate the performance of the proposed method. The experimental results show that the proposed method obtains better recognition rate and requires lesser memory than the direct LDA.

A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(l) - Signal Processing and Feature Extraction - (절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(I) - 신호처리 및 특징추출 -)

  • Cheong, C.Y.;Yu, K.H.;Suh, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.135-140
    • /
    • 1997
  • The detection of cutting tool states in machining is important for the automation. The information of cutting tool states in metal cutting process is uncertain. Hence a industry needs the system which can detect the cutting tool states in real time and control the feed motion. Cutting signal features must be sifted before the classification. In this paper the Fisher's linear discriminant function was applied to the pattern recognition of the cutting tool states successfully. Cutting conditions and cutting force para- meters have shown to be sensitive to tool states, so these cutting conditions and cutting force paramenters can be used as features for tool state detection.

  • PDF

An Intelligent Visual Servoing Method using Vanishing Point Features

  • Lee, Joon-Soo;Suh, Il-Hong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.177-182
    • /
    • 1997
  • A visual servoing method is proposed for a robot with a camera in hand. Specifically, vanishing point features are suggested by employing a viewing model of perspective projection to calculate the relative rolling, pitching and yawing angles between the object and the camera. To compensate dynamic characteristics of the robot, desired feature trajectories for the learning of visually guided line-of-sight robot motion are obtained by measuring features by the camera in hand not in the entire workspace, but on a single linear path along which the robot moves under the control of a commercially provided function of linear motion. And then, control actions of the camera are approximately found by fuzzy-neural networks to follow such desired feature trajectories. To show the validity of proposed algorithm, some experimental results are illustrated, where a four axis SCARA robot with a B/W CCD camera is used.

  • PDF

Fast Pedestrian Detection Using Histogram of Oriented Gradients and Principal Components Analysis

  • Nguyen, Trung Quy;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, we propose a fast and accurate system for detecting pedestrians from a static image. Histogram of Oriented Gradients (HOG) is a well-known feature for pedestrian detection systems but extracting HOG is expensive due to its high dimensional vector. It will cause long processing time and large memory consumption in case of making a pedestrian detection system on high resolution image or video. In order to deal with this problem, we use Principal Components Analysis (PCA) technique to reduce the dimensionality of HOG. The output of PCA will be input for a linear SVM classifier for learning and testing. The experiment results showed that our proposed method reduces processing time but still maintains the similar detection rate. We got twenty five times faster than original HOG feature.

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF

Non-iterative Global Mesh Smoothing with Feature Preservation

  • Ji, Zhongping;Liu, Ligang;Wang, Guojin
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.89-97
    • /
    • 2006
  • This paper presents a novel approach for non-iterative surface smoothing with feature preservation on arbitrary meshes. Laplacian operator is performed in a global way over the mesh. The surface smoothing is formulated as a quadratic optimization problem, which is easily solved by a sparse linear system. The cost function to be optimized penalizes deviations from the global Laplacian operator while maintaining the overall shape of the original mesh. The features of the original mesh can be preserved by adding feature constraints and barycenter constraints in the system. Our approach is simple and fast, and does not cause surface shrinkage and distortion. Many experimental results are presented to show the applicability and flexibility of the approach.

A Wavelet based Feature Selection Method to Improve Classification of Large Signal-type Data (웨이블릿에 기반한 시그널 형태를 지닌 대형 자료의 feature 추출 방법)

  • Jang, Woosung;Chang, Woojin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • Large signal type data sets are difficult to classify, especially if the data sets are non-stationary. In this paper, large signal type and non-stationary data sets are wavelet transformed so that distinct features of the data are extracted in wavelet domain rather than time domain. For the classification of the data, a few wavelet coefficients representing class properties are employed for statistical classification methods : Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Network etc. The application of our wavelet-based feature selection method to a mass spectrometry data set for ovarian cancer diagnosis resulted in 100% classification accuracy.

Unsupervised Feature Selection Method Based on Principal Component Loading Vectors (주성분 분석 로딩 벡터 기반 비지도 변수 선택 기법)

  • Park, Young Joon;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • One of the most widely used methods for dimensionality reduction is principal component analysis (PCA). However, the reduced dimensions from PCA do not provide a clear interpretation with respect to the original features because they are linear combinations of a large number of original features. This interpretation problem can be overcome by feature selection approaches that identifying the best subset of given features. In this study, we propose an unsupervised feature selection method based on the geometrical information of PCA loading vectors. Experimental results from a simulation study demonstrated the efficiency and usefulness of the proposed method.

Microphone Type Classification for Digital Audio Forgery Detection (디지털 오디오 위조검출을 위한 마이크로폰 타입 인식)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • In this paper we applied pattern recognition approach to detect audio forgery. Classification of the microphone types and models can help determining the authenticity of the recordings. Canonical correlation analysis was applied to extract feature for microphone classification. We utilized the linear dependence between two near-silence regions. To utilize the advantage of multi-feature based canonical correlation analysis, we selected three commonly used features to capture the temporal and spectral characteristics. Using three different microphones, we tested the usefulness of multi-feature based characteristics of canonical correlation analysis and compared the results with single feature based method. The performance of classification rate was carried out using the backpropagation neural network. Experimental results show the promise of canonical correlation features for microphone classification.

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.