Abstract
A visual servoing method is proposed for a robot with a camera in hand. Specifically, vanishing point features are suggested by employing a viewing model of perspective projection to calculate the relative rolling, pitching and yawing angles between the object and the camera. To compensate dynamic characteristics of the robot, desired feature trajectories for the learning of visually guided line-of-sight robot motion are obtained by measuring features by the camera in hand not in the entire workspace, but on a single linear path along which the robot moves under the control of a commercially provided function of linear motion. And then, control actions of the camera are approximately found by fuzzy-neural networks to follow such desired feature trajectories. To show the validity of proposed algorithm, some experimental results are illustrated, where a four axis SCARA robot with a B/W CCD camera is used.