• 제목/요약/키워드: linear elastic analysis

검색결과 760건 처리시간 0.028초

일반화가법모형에서 축소방법의 적용연구 (A Study on Applying Shrinkage Method in Generalized Additive Model)

  • 기승도;강기훈
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.207-218
    • /
    • 2010
  • 일반화가법모형은 기존 선형회귀모형의 문제점을 대부분 해결한 통계모형이지만 의미있는 독립변수의 수를 줄이는 방법이 적용되지 않을 경우 과대적합 문제가 발생할 수 있다. 그러므로 일반화가법모형에서 변수 축소방법을 적용하는 연구가 필요하다. 회귀분석에서 변수 축소방법으로 최근에는 Lasso 계열의 접근법이 연구되고 있다. 본 연구에서는 활용성이 높은 통계모형인 일반화가법모형에 Lasso 계열의 모형 중에서 Group Lasso와 Elastic net 모형을 적용하는 방법을 제시하고 이들의 해를 구하는 절차를 제안하였다. 그리고 제안된 방법을 모의실험과 실제자료인 회계년도 2005년 자동차보혐 자료에 적용을 통해 비교하여 보았다. 그 결과 본 논문에서 제안한 Group Lasso와 Elastic net을 이용하여 변수 축소를 통한 일반화가법모형이 기존의 방법보다 더 나은 결과를 제공하는 것으로 분석 되었다.

境界積分法에 의한 軸對稱 彈性 問題의 解析 (Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems)

  • 공창덕;김진우
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.787-797
    • /
    • 1986
  • 본 논문에서는 축대칭 선형 문제의 경계적분법에 대한 일반화한 정식화 과정 및 수치적 접근방법이 제시되었으며 정식화 과정 중 Navier 방정식의 기본해로부터 도 출되는 변위 및 표면적 Kernel을 구하는 Hankel 변환법을 이용한 $\ulcorner$직접축대칭접근법 $\lrcorner$과 3차원 Kevin 해로부터 원주경로 따라 적분한 $\ulcorner$3차원 접근법$\lrcorner$이 비교 검토되었 다.

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai;Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.451-463
    • /
    • 2022
  • The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석 (An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections)

  • 진만식;이병주;김문영
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.11-20
    • /
    • 2004
  • 본 연구에서는 직선 강상자형 거더의 단면변형에 의한 변형 및 응력계산을 위한 Matlab 해석프로그램을 개발하고자 한다. 이를 위하여 단면변형이론을 요약하고 빔유사이론을 제시한다. 이후 탄성지반위의 보-기둥부재의 지배방정식을 제시하고, 일반화된 고유치해석을 통하여 집중 및 분포하중을 받는 보요소의 엄밀한 강성행렬을 계산한다. 본 연구의 효율성과 정확성을 입증하기 위하여 격벽을 갖는 상자형 거더의 뒤틀림응력을 계산하고 유한요소해와 비교한다.

단위부재 모델화에 따른 단층 래티스 돔의 탄소성 좌골하중의 산정에 관한 연구 (A Study on the Estimation of Elasto-Plastic Buckling Loads for Sing1e Layer Latticed Domes by Unit Member Modeling Technique.)

  • 한상을;이상주;유용주;이경수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.290-297
    • /
    • 1998
  • In this paper, we propose to a method to estimate the elasto-plastic buckling for single layer latticed domes. First, we assume that each member consists of the rigid zone and elastic spring at both end joint, the elastic element and three elasto-plastic spring to judge for yeilding the member. Next, the member which has most influence on buckling for structures is determined by a distributed pattern of the strain energy which is calculated through linear eigenvalue analysis. And then, normalized slenderness ratio of the element is derived considering the axial force at elastic buckling load. Later, we execute elasto-plastic nonlinear analysis that based on loading increasement method and displacement increasement method. From this results, we discusses the effect of the joint rigidity and the half open angle $\theta$$_{0}$ on the buckling strength of single layer lattice domes ; (1) how the joint rigidity contributes to the reduction of buckling loads, (2) how the reduction can be interrelated to compressive strength curves in terms of the generalized slenderness for the member most relevant to the overall buckling of domes.s.

  • PDF

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

Rheology of flocculated kaolinite dispersions

  • McFarlane A.J.;Addai-Mensah J.;Bremmell K.
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.181-190
    • /
    • 2005
  • Rheological characterisation of flocculated kaolinite pulps has been undertaken to elucidate particle interactions underpinning the dewatering behaviour induced by flocculation with polyethylene oxide (PEO), anionic polyacrylamide (PAM A) and their blends. Shear yield stress $(\tau_y)$ analysis indicated that polymer mediated particle interactions were markedly amplified upon shear of PEG based pulps. In contrast, PAM A based pulps showed a significant decrease in yield values upon shear. Steady stress measurements analysed using a modified Ellis model indicated subtle differences between the respective linear viscoelastic plateaus of the pulps. Furthermore, modified shear thinning behaviour was evident in PEG based pulps. Estimation of elastic and viscous moduli (G', G') was made using dynamic stress analysis for comparison with values determined from vane measurements. Despite a noticeable difference in the magnitude of G' between the two methods, similar trends indicating sheared PEG-based pulps to be more elastic than PAM based pulps, were observed. Floc microstructural observations obtained in support of rheological properties indicate that PEG flocculant induces significantly more compact particle aggregation within the clay pulps under shear consistent with the yield stress data, in contrast to PAM A, or indeed unsheared PEG based pulps. Consequentially, sheared PEG based pulps show significantly improved dewatering behaviour. The implications of the results, potential benefits and drawbacks of flocculation with PEG and PAM A are discussed with respect to improvements in current dewatering processes used in the minerals industry.