• 제목/요약/키워드: linear clusters

검색결과 141건 처리시간 0.025초

커널을 이용한 전역 클러스터링의 비선형화 (A Non-linear Variant of Global Clustering Using Kernel Methods)

  • 허경용;김성훈;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

집락자료의 분할표에서 독립성검정 (Testing Independence in Contingency Tables with Clustered Data)

  • 정광모;이현영
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.337-346
    • /
    • 2004
  • 랜덤표본에 관한 이원분할표의 독립성검정에는 통상 피어슨의 카이제곱적합도검정과 우도비검정을 사용한다. 그러나 랜덤표본이 아닌 집락자료에 관한 분할표의 경우에는 이들 검정법은 잘못된 결과를 나타낸다. 이러한 경우에는 공변량의 고정효과 외에 집락에 따른 변량효과를 함께 포함하는 일반화선형혼합모형을 고려함으로써 집락간의 이질성과 집락내의 종속성을 반영할 수 있다. 본 연구에서는 집락자료의 분할표에 대한 일반화선형혼합모형을 소개하고 실례를 통하여 이들 모형의 적합에 대해 논의한다.

Structures and Spectroscopic Properties of $OC_nO$ (n=2-6): Density Functional Theory Study

  • 김경환;이보순;이성열
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.553-557
    • /
    • 1998
  • Density functional theory calculations are reported for the carbon clusters bonded with two oxygen atoms $OC_No$ (n=2-6). The structures, vibrational frequencies and dipole moments are computed by BLYP theory with the 6-311G* basis set. Good agreement is obtained between the computed and experimentally observed properties. The ground states of these molecules are shown to be linear. Cyclic structures with higher energy are also predicted.

More on directional regression

  • Kim, Kyongwon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.553-562
    • /
    • 2021
  • Directional regression (DR; Li and Wang, 2007) is well-known as an exhaustive sufficient dimension reduction method, and performs well in complex regression models to have linear and nonlinear trends. However, the extension of DR is not well-done upto date, so we will extend DR to accommodate multivariate regression and large p-small n regression. We propose three versions of DR for multivariate regression and discuss how DR is applicable for the latter regression case. Numerical studies confirm that DR is robust to the number of clusters and the choice of hierarchical-clustering or pooled DR.

ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEV ITERATION TECHNIQUE

  • LEVIN, MIKHAIL P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권1호
    • /
    • pp.15-28
    • /
    • 2018
  • Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.

선형행렬 부등식을 이용한 타원형 클러스터링 알고리즘 (Hyper-ellipsoidal clustering algorithm using Linear Matrix Inequality)

  • 이한성;박주영;박대희
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.300-305
    • /
    • 2002
  • 본 논문에서는 타원형 클러스터링을 위한 거리측정 함수로써 변형된 가우시안 커널 함수를 사용하며, 주어진 클러스터링 문제를 각 타원형 클러스터의 체적을 최소화하는 문 로 해석하고 이를 선형행렬 부등식 기법 중 하나인 고유값 문제로 변환하여 최적화하는 새로운 알고리즘을 제안한다.

멀티스펙트럼 영상 획득 시스템 구현 (Implementation of Multispectral Imaging System)

  • 진윤종;이문현;노성규;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.717-721
    • /
    • 2008
  • 본 논문에서는 RGB 카메라와 LED 광원만을 이용하여 객체에 대한 반사 스펙트럼을 효율적으로 측정하는 영상 획득 시스템을 제안한다. 멀티스펙트럼 영상 획득 시스템은 LED 컨트롤러, LED 클러스터, RGB 카메라로 구성되고 전역 스펙트럼(full spectrum)의 영상을 실시간으로 획득하는 시스템이다. 제안된 시스템은 스펙트럼 기저 함수들의 선형 결함으로 전역 스펙트럼을 재구성하여 비교적 간단하면서도 높은 정확도를 보장해준다. 본 시스템의 효용성을 증명하기 위해 다양한 장면(scene)에 대한 반사 스펙트럼을 측정하고 이를 이용하여 여러 광원을 적용한 재조명 결과를 보여준다.

  • PDF

선형배열 기지국을 위한 위치정보 서버의 최적할당 방식 (An Optimal Allocation Mechanism of Location Servers in A Linear Arrangement of Base Stations)

  • 임경식
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.426-436
    • /
    • 2000
  • 이동 통신환경에서 이동노드들은 기지국(base station)을 통하여 통신하므로, 기지국은 트래픽의 발신지 및 착신지로서 데이터 트래픽, 위치정보 트래픽 등과 같이 처리비용이 다른 이종의 트래픽을 발생한다. 그러데, 하나의 위치 정보 서버는 물리적으로 제한된 용량으르 다지므로 여러 대의 위치정보 서버를 분산시켜 구축할 필요가 있는데, 이때 기지국을 최적으로 클러스터링하고 각 클러스터마다 하나의 위치정보서버를 할당해야 한다. 본 논문에서는 기지국이 선형으로 배열된 이동 통신망에서, 서로간에 다양한 형태의 트래픽을 발생하는 n개의 기지국이 주어졌을 때, 전체 네트워크에 대한 통신비용을 최소화하기 위하여 이들을 m($1{\le}m{\le}n$) 개의 인접한 클러스터(disjoint cluster)로 분리하는 문제를 고려한다. 이를 위하여, 본 논문에서는 주어진 트래픽이 클러스터 내부에서 발생할 때와 클러스트간에 발생할 때의 통신비용 차이를 반영한 상대비용(relative cost) 개념을 도입하여 O($mm^2$)의 동적 프로그래밍(dynamic programming) 알고리즘을 제시한다. 또한 이 알고리즘은 하나의 클러스터에 대한 크기제한과 전체 네트워크에 허락된 총 통신비용이 제악조건으로 주어질 경우, 같은 계산시간 내에 모든 유효한 클러스터를 찾아 낼 수 있음을 보인다.

  • PDF

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).