• Title/Summary/Keyword: linear actuator

Search Result 632, Processing Time 0.03 seconds

Development of Power Supply for Voltage-Adaptable Converter to Drive Linear Amplifiers with Variable Loads (가변부하를 갖는 선형 증폭기를 구동하기 위한 전압적응 변환기용 전력공급기 개발)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.251-257
    • /
    • 2014
  • An actuator system is a type of motor designed to control a mechanism operated by a source of energy, in the form of an electric current by converting energy into some kind of motion. As audio actuators, transforming electric voltage signal into audio signal, speakers and amplifiers are commonly used. In applications of industry, high output power systems are required. For these systems to generate high-quality output, it is essential to control output impedance of audio systems. We have developed an adaptable power supply for driving active amplifier systems with variable loads. Depending on the changing values of resistance of the speaker which produces audible sound by transforming electric voltage signal, the power supply source of the active amplifier can generate the maximum power delivered to the speaker by an adaptable change of loads. The amplifier is well protected from the abrupt increment of peak current and an excess of current flow.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Investigation of Spark Discharge in Water as a Source of Mechanical Actuation

  • Taylor, Nathaniel D.;Fridman, Gregory;Fridman, Alexander;Dobrynin, Danil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.258-258
    • /
    • 2014
  • Spark discharge in water generates shockwaves which have been utilized to generate mechanical actuation for potential use in pumping application. Discharge pulses of several microseconds generate shockwaves and vapor bubbles which subsequently displace the water for a period of milliseconds. Through the use of a sealed discharge chamber and metal bellow spring, the fluid motion can be used create an oscillating linear actuator. Continuous actuation of the bellow has been demonstrated through the use of high frequency spark discharge. Discharge in water forms a region of high electric field around the electrode tip which leads to the creation of a thermal plasma channel. This process produces fast thermal expansion, vapor and bubble generation, and a subsequent shockwave in the water which creates physical displacement of the water [1]. Previous work was been conducted to utilize the shockwave effect of spark discharge in water for the inactivation of bacteria, removal of mineral fouling, and the formation of sheet metal [2-4]. Pulses ranging from 25 to 40 kV and 600 to 900 A are generated inside of the chamber and the bellow motion is captured using a slow motion video camera. The maximum displacements measured are from 0.7 to 1.2 mm and show that there is a correlation between discharge energy input to the water and the displacement that is generated. Subsequent oscillations of the bellow are created by the spring force of the bellow and vapor in the chamber. Using microsecond shutter speed ICCD imaging, the development of the discharge bubble and spark can be observed and measured.

  • PDF

Experimental Study on Unsteady-state Characteristics of a Pintle Thruster with Variable Pintle Speeds (핀틀 구동속도에 따른 핀틀 추력기의 비정상상태 특성에 대한 실험적 연구)

  • Hwang, Heuiseong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • The purpose of this study is to investigate unsteady-state characteristics of a pintle thruster with various pintle speed. Based on steady state experimental results, non-linear pintle stroke equation is obtained and applied to the unsteady state experimental system. For the unsteady state experiments, three different pintle speeds are used: 3.10 mm/s, 5.65 mm/s, 10.83 mm/s, respectively. Results show that backward pintle stroke results in faster convergence time because of high chamber pressure during backward pintle stroke sequence. During the forward and backward process, thrust curve shows singular points. These phenomenons is caused by variation of mass flow rate, which is mainly due to changes of both chamber pressures and nozzle throat area. This behavior becomes distinctive for a faster pintle speed case.

Dynamic Positioning Control System Design for Surface Vessel: Observer Design Based on H Control Approach (수상선박의 위치 및 자세제어시스템 설계에 관한 연구 : 강인제어기법에 의한 관측기 설계)

  • Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1171-1179
    • /
    • 2012
  • In this study, we consider a dynamic positioning system (DPS) design problem that can be extended to many application fields. Toward this end, tracking and positioning control problems are discussed. In particular, we design a tracking control system that incorporates an observer based on the 2-DOF servo system design approach in order to obtain the desired state information. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation (inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator that satisfies the weighted $H_{\infty}$ error bound is introduced. The condition for the existence of the estimator is denoted by a linear matrix inequality (LMI) that yields an optimized solution and the observer gain.

A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin (화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구)

  • Kwon Young-Ha;Kwon Hyun-Joon;Rang Moon-Jeong;Lee Su-Min
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • A frictional coefficients of in-vivo skin characteristic is the most important factor of the cutaneous mechanical properties ant the method of evaluating skin care in the fields of cosmetics products. In-vivo skin characteristic varies in many different ways depends on what is applied to the skin, loading condition, shape, surface roughness, and material of the probe. In this research, we designed a system which can be measured frictional coefficients of a human skin on real time. It consists of multi-components load-cell, actuator, linear motor and arm fixator. This measurement system was automatically controlled by computer. We measured frictional coefficients between probe an4 skin using this system ant inquired adjectives for subjective evaluation while rubbing cosmetic product on skin. Lastly, we analyzed correlation between two factors by calculating Pearson Correlation Coefficient. As a result, we could know that frictional coefficients varied from 0.17-1.2 according to cosmetic products, normal forte, materials and surface conditions of probe. We also confirmed sensual feelings of cosmetic products have close correlation with frictional coefficients.

  • PDF

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도)

  • Shin, Hyun-Jun;Lee, Woo-Teak;Park, Suk-Hoon;Lee, Sun-Hwa;Park, Jung-Ho;Yoon, Yong-San;Shin, Jennifer H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.629-636
    • /
    • 2009
  • Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Design of Control Method for ON/OFF Type Actuation System Considering Actuation Limit (구동한계를 고려한 ON/OFF 형식 구동시스템의 구동위치 제어기법 설계)

  • Park, Jungwoo;Park, Iksoo;Park, Dongchang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2015
  • In this paper, it is accomplished to design a control method for such an actuation system of simplified ON/OFF mechanism with actuation command limit. First of all, based on experimental data, the modeling works for nonlinear/linear actuation dynamics are performed, which are govern by PWM command as a control input. Using the linearized model, a classical PI control method is designed to satisfy the aimed control performance requirements, and a control algorithm is proposed to realize the required control performance in the effective control region through resolving the issue for the PWM command limit which reduces the control performance. Finally, through control simulations, the design method is verified and the corresponding control performance improvement is evaluated.

Application of Adaptive Control for the U Type TLD (U자형 TLD시스템에 대한 적응제어 적용)

  • Ga, Chun-Sik;Shin, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.518-521
    • /
    • 2005
  • The Structures or buildings nowadays draw more complexity in design due to space limitation and other factor that affect the height and dimensions, that results to instability. So the various methods have been carried out to improve the safety factor from an earthquake or a boom until recently. But, it is very hard to get model precisely because these structures are the non-linear and multi-variable systems. For this reason, we developed the active control system that is applied the adaptive control method on the U type Tuned Liquid Damper(TLD) passive control system. It is proven that the proposed active control strategy of the plate carrying U type TLD system is the more effective control method to suppress the vibration of the structure. The entire hybrid control system is composed of the actuator acted in the opposite direction of the TLD system's motion direction and the active control device with an air pressure adjuster. This paper proposed the adaptive control methods to improve the problem of U type TLD system which is used widely for the passive control of the building. And it is proved by the simulation. In advanced, it is developed the pressure control method that is improved the hybrid controller's performance by using air chamber pressure controller. These methods take the advantage of the decrease of the maximum displacement by using the controller as soon as the impact is loaded. This is a very important element for the safety design and economic design of structures.

  • PDF