• Title/Summary/Keyword: line-heating

Search Result 378, Processing Time 0.028 seconds

Study on the Development of Optimal Heat Supply Control Algorithm in Group Energy Apartment Building According to the Variation of Outdoor Air Temperature (외기온도 변화에 따른 집단에너지 공동주택의 최적 열공급제어 알고리즘 개발에 관한 연구)

  • Byun, Jae-Ki;Lee, Kyu-Ho;Cho, Young-Don;Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • In the present study, optimal heat supply algorithm which minimize the heat loss through the distribution pipe line in group energy apartment was developed. Variation of heating load of group energy apartment building in accord with the outdoor air temperature was predicted by the heating load-outdoor temperature correlation. Supply water temperature and mass flow rate were controlled to minimize the heat loss through distribution pipe line. District heating apartment building located in Hwaseong city, which has 1,473 households, was selected as the object building for testing the present heat supply a1gorithm. Compared to the previous heat supply system, 10.4% heat loss reduction can be accomplished by employing the present method.

Study on the Generalization of the Equivalent Point Method for Thermal Evaluation (Equivalent Point Method의 일반적 이용을 위한 연구)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.575-581
    • /
    • 1990
  • The existence of the equivalent point for a thermal processing system was demonstrated using arbitrarily chosen ideal direct heating curves. i.e. isothermal heating curves at $120^{\circ}C$ for 10min and at $135^{\circ}C$ for 10sec. Under these conditions, G-values and F-values were calculated at various values of Ea- and z-values by applying the Arrhenius and the Bigelow models respectively. The equivalent time and equivalent temperature were determined by both line intersection and linear regression methods. The equivalent points estimated by both the line intersection and the linear regression methods were consistent and their values were the same as the heating time and temperature of the ideal direct heating curves.

  • PDF

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process (곡가공 프로세스를 고려한 곡판 분류 알고리즘)

  • Noh, Ja-Ckyou;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

A Mechanical Information Model of Line Heating Process using Artificial Neural Network (인공신경망을 이용한 선상가열 공정의 역학정보모델)

  • Park, Sung-Gun;Kim, Won-Don;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 1997
  • Thermo-elastic-plastic analyses used in solving plate forming process are often computationally expensive. To obtain an optimal process of line heating typically requires numerous iterations between the simulation and a finite element analysis. This process often becomes prohibitive due to the amount of computer time required for numerical simulation of line heating process. Therefore, a new techniques that could significantly reduce the computer time required to solve a complex analysis problem would be beneficial. In this paper, we considered factors that influence the bending effect by line heating and developed inference engine by using the concept of artificial neural network. To verify the validity of the neural network, we used results obtained from numerical analysis. We trained the neural network with the data made from numerical analysis and experiments varying the structure of neural network, in other words varying the number of hidden layers and the number of neurons in each hidden layers. From that we concluded that if the number of neurons in each hidden layers is large enough neural network having two hidden layers can be trained easily and errors between exact value and results obtained from trained network are not so large. Consequently, if there are enough number of training pairs, artificial neural network can infer similar results. Based on the numerical results, we applied the artificial neural network technique to deal with mechanical behavior of line heating at simulation stage effectively.

  • PDF

A Study on the development of Heating Facility Control and Remote Control System using Power Line Communication (PLC) (전력선 통신(PLC)을 이용한 난방기기 제어 및 원격제어 시스템의 개발에 관한 연구)

  • Kim, Yong-Tae;Shin, Kwan-Woo;Lee, Youn-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.65-67
    • /
    • 2001
  • PLC (Power Line Communication) is the communication method using the existing power line installed in houses and offices to convert and transmit high frequency communication signal from tens of KHz to tens of MHz, and receive the filtered signal using high frequency filter. The advantage of PLC is that PLC uses the existing power line installed in houses and offices so it does not require separate power line. Easy and convenient access using electric outlets is another advantage of PLC. However, PLC has some disadvantages such as limited transmission power, high load interference and noise, variable signal attenuation, characteristic of impedance selective possibility of frequency property. This study designed the boiler temperature control system by unit using the modem designed on the basis of technology used for PLC modem, and designed remote control system using internet. After conducting experiments with those two systems, it was possible to control stably. By commercializing this product, we can avoid unnecessary heating of separate temperature control unit, and save the cost according1y, and it is possible to control on a remote site using internet in a more convenient way.

  • PDF

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Fluid Heating System using High-Frequency Inverter Based on Electromagnetic Indirect Induction Heating

  • Kim Yong-Ju;Shin Dae Cheul;Kim Kee Hwan;Uchihori Y.;Kawamura Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.69-74
    • /
    • 2001
  • In this Paper are described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20kHz to 50kHz. A specially designed induction heater, which is composed of laminated stainless assembly with many tiny holes and interconnected spot welding points between stainless plates, is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

  • PDF

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element (유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성)

  • Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.405-411
    • /
    • 2015
  • Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).