• Title/Summary/Keyword: line to ground fault

Search Result 257, Processing Time 0.026 seconds

Analysis of Fire Accident on DC Electric Traction Vehicles Caused by Breakdown in the Line Breaker (회로 차단기 절연파괴로 인한 직류 전기철도 화재 사고사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Goh, Jae-Mo;Kim, Jin-Pyo;Nam, Jung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.16-21
    • /
    • 2017
  • Fire or electrical problem while DC electric traction vehicle operation caused by various reasons can lead to not only suspension of the operation, but also severe aftermath such as massive casualty. In this paper, fire analysis on DC electric traction vehicle caused by electrical breakdown on line breaker, which is in connection with the power supply, is presented. When the electric arc, the by-product of frequent line breaker operation, is not fully diminished, it leads to electrical breakdown and fire. Especially, electrical breakdown can be easily induced by the open-and-close operation of inner contractor inside line breaker, eventually followed by ground fault and generation of transient current. Electric arc is consequent on the ground fault and acts as possible ignition source, leading to fire. Also, during the repetitive operation of the line breaker, the contactor is separated each other and some copper powder is generated, and the copper powder provided breakdown path, resulting in fire.

The Effects of Common Ground according to Fault Conditions in The Underground Transmission and Distribution System (고장조건에 따른 지중송배전계통에서 공통접지의 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.285-287
    • /
    • 2007
  • This paper describes that the effect on the other system is generated by the single line to ground fault of the underground transmission systems and distribution systems established the common ground in trefoil. Each system is modeled by EMTP/ATPDraw and the system carry out simulations according to the various values of common ground to analyse. In this study, the result of analysis based on simulation suggests protection method and ground system of each system.

  • PDF

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

Fault Location Identification Using Software Fault Tolerance Technique (소프트웨어 Fault Tolerance를 이용한 고장점 표정)

  • Kim Wonha;Jang Yong-Won;Han Seung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • The management of technological systems will become increasingly complex. Safe and reliable software operation is a significant requirement for many types of system. So, with software fault tolerance, we want to prevent failures by tolerating faults whose occurrences are known when errors are detected. This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line using software fault tolerance technique. To find the fault location of transmission line, we have to solve the 3rd order transmission line equation. A significant improvement in the identification of the fault location was accomplished using the N-Version Programming (NVP) design paradigm. The delivered new algorithm has been tested with the simulation data obtained from the versatile EMTP simulator.

A Line to Ground Fault Location Algorithm for Underground Cable System (지중 케이블 계통의 1선지락 고장점 표정 알고리즘)

  • Lee Duck-Su;Yang Xia;Choi Myeon-Song
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.267-273
    • /
    • 2005
  • This paper proposes a line-to-ground fault location algorithm for underground cable system. A feature of the proposed method is a new algorithm based on the analytic research which has not been tried until now. The proposed method firstly makes voltage and current equations using analysis of distributed parameter circuit for each of cores and sheathes respectively, and then establishes an equation of the fault distance according to the analysis of the fault conditions. Finally the solution of this equation is calculated by Newton-Raphson iteration method. The effectiveness of this proposed algorithm has been proven through PSCAD/EMTDC(Ver. 4.1) simulations.

Electromagnetic Field Distribution of Reactors for Matrix-type SFCLs under Triple Lines-to-Ground Faults (삼선 지락사고 발생시 매트릭스형 한류기용 리액터의 전자장 분포 해석)

  • Chung, Dong-Chul;Han, Tae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.459-463
    • /
    • 2011
  • In this paper we reported the characteristics of 1 line, 2 lines and 3 lines-to-ground fault of matrix-type SFCLs (MFCLs) and the electromagnetic field distribution of reactors for MFCLs under the same cases of ground faults. To do this, we fabricated MFCLs with 6 reactors for 3 phases. Each reactor had the length of 270 mm and diameter of 80 mm. 6 reactors were made by Bakelite. We reported experimental results, including fault currents, fault voltages and magnetic field distribution according to phase differences between each phase. We confirmed that experimental results will be useful in next future plan for real power grid.

Operational Characteristics in integrated Three-Phase a Flux-Lock type SFCL according to Fault Conditions (3상 일체화된 자속구속형 전류제한기의 동작특성)

  • Lee, Na-Young;Choi, Hyo-Sang;Jeong, Soo-Bok;Lee, Sang-Il;Nam, Gueng-Hyun;Lim, Sung-Hun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.467-470
    • /
    • 2006
  • Superconducting fault current(SFCLs) are expected to improve not only reliability but also stability of real power systems. The analysis on the single line-to-ground fault current of the integrated three phase flux-lock type SFCL, which consists of three flux-lock reactor wound on an iron core in each single phase and three YBCO thin films, was investigated in current limiting operating characteristics. We compared additive polarity winding with the subtractive one in the flux lock reactor. Its turns ratio each phase between the primary and the secondary coils is 63:42. When a single line-to-ground fault occurred in any phase, the peak value of line current in the fault phase of the additive polarity winding increased up to 31.44[A] during first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to 81.77[A] under the same conditions. This is because the current flow between the primary and the secondary windings becomes to be additive or subtractive in each winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to ground fault.

  • PDF

A Line-to-ground Cable Fault Location Method for Underground Distribution System (지증 배전계통을 위한 1선지락 고장거리계산 방법)

  • Yang, Xia;Lee, Duck-Su;Choi, Myeon-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.329-331
    • /
    • 2005
  • This paper proposes a line-to-ground cable fault location method for underground distribution system. The researched cable is composed of core and sheath. And underground cabke system has been analyzed using Distributed Parameter Circuit. The effectiveness of proposed algorithm has been verified through EMTDC simulations.

  • PDF

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.