• Title/Summary/Keyword: line source

Search Result 1,649, Processing Time 0.03 seconds

Source Coding Rule of Characters to Minimize HDB-3 Scrambling in Line Coder for UTF-8 code (UTF-8 부호의 HDB-3스크램블링 최소화를 위한 문자의 원천부호화 규칙)

  • Hong, Wan-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1019-1026
    • /
    • 2015
  • This paper studied the source coding rule of the characters to minimize the HDB-3 scrambling for UTF-8 code. An existing source coding rule of the characters to minimize the HDB-3 scrambling in the line coder is for the source codes which are directly entered into the line coder without any transformation. Therefore the existing source coding rule can't apply the UTF-8 code which is directly came into an input of line coder. The reason is that the scrambling code in the source codes are not same as UTF-8 codes. So, if they want to analysis the scrambling occurrence situation in UTF-8 codes and make an unscrambling UTF-8 code, they should make a UTF-8 code table for the source codes, find out the scrambling occurrence codes and then encode the unscrambling source code. The source coding rule for UTF-8 code showing this paper can omit such a complicated procedure to encode an unscrambling source code.

Determination of the Strike and the Dip of a Line Source Using Gravity Gradient Tensor (중력 변화율 텐서를 이용한 선형 이상체의 주향과 경사 결정)

  • Rim, Hyoungrea;Jung, Hyun-Key
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.529-536
    • /
    • 2014
  • In this paper, the automatic determination algorithm of strike and dip of a line source using gravity gradient on a single profile is proposed. In general, the gravity gradient tensor due to a line source has only two independent components because of its 2-Dimensional (2-D) characteristics. However, if the line source has the strike and dip regarding the observation profile, it comes to have five independent components. The proposed algorithm of the determination both strike and dip is based on the rotational transform that converts full gravity gradient tensor to reduced 2-D gravity gradient tensor. The least-square method is applied in order to find optimum rotational angles that make one of the row components minimalized simultaneously. The two synthetic cases of a line source are represented; one has strike only and the other has both strike and dip. This study finds that the automatic determination method using gravity gradient tensor can find directions of a line source in each case.

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Indentification of Coherent/Incoherent Noise Sources Using A Microphone Line Array (독립, 비독립 음원이 동시에 존재할 경우 선형 마이크로폰 어레이를 이용한 소음원 탐지 방법)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.835-842
    • /
    • 1996
  • To identify the locations and strengths of acoustic sources, one may use a microphone line array. Apparent advantage of the source identification method utilizing a line array is that it requires less measurement points than intensity method and holography. This method is based on the information of magnitude and phase difference between pressure signals at each microphone. Since those differences are dependent on the source model, we have to assume them such as plane, monopole, etc. In this paper the conventional source identification methods such as beamforming method and MUSIC method are briefly reviewed by modeling a source as plane and spherical wave, then a modified method is introduced. This can be applied to sound field which may by either coherent or incoherent. Typical simulations and experiment are performed to confirm this identification method.

  • PDF

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

Effect of Source Line Location on Lift-off Acoustic Loads of a Launch Vehicle (음원 분포선 위치가 발사체 이륙 음향하중에 미치는 영향)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.539-545
    • /
    • 2015
  • Intense acoustic load is generated when a launch vehicle lifts off, causing the damaging vibrations at the launch vehicle or satellite within the fairing. This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. As a test example, the lift-off acoustic load on the Korean launch vehicle, NARO, is predicted by the existing calculation tool, the modified Eldred's second method. Although the acoustic sources, assumed as point sources, are to be located along the center line of the exhaust plume when using the Eldred's prediction method, the exact location of the deflected center line of exhaust gas flow is not usually known. To search for the most appropriate source positions, six models of source line distribution are suggested and the acoustic load prediction results from these models are compared with the actual measurements. It is found that the predicted sound pressure spectrum of the Naro is the most similar to the measured data when the centerline of the turbulent kinetic energy contour is used as the source line.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

A Study on the Optimum Synthesis of Line Source Difference Patterns by Sidelobe Level Control (Sidelobe 레벨 제어를 통한 선전원 차패턴 최적 합성에 관한 연구)

  • Park, Eui-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.57-63
    • /
    • 2007
  • In this paper, a new approach to the optimum synthesis of line source difference patterns is proposed for the monopulse tracking way antennas. In the Proposed scheme, which is different from the well-known Bayliss difference pattern synthesis, the difference patterns with the desired individual sidelobe levels are optimally synthesized by appropriately modifying the Taylor line source sum pattern formula. That is, the relationship between the difference pattern and the corresponding source distribution function is analytically established, and then the desired pattern and the distribution are simultaneously extracted by the optimum perturbation of pattern null positions. Furthermore this method provides more rapid sidelobe decay rates than conventional methods. Some numerical results show the validity and usefulness of the proposed procedures.

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF