• Title/Summary/Keyword: line pipe

Search Result 499, Processing Time 0.035 seconds

Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals (이미지 신호를 이용한 원자력발전소 강재배관 Tee의 저주기 피로 거동)

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.77-83
    • /
    • 2019
  • Upon installing a seismic isolation device on a nuclear power plant, the device takes on the suppression of seismic loads. This is expected to bring about a larger displacement than what is seen prior to the installation of the seismic isolation device. Depending on the displacement change, the seismic risk for some equipment can increase. Particularly in case of the piping system, which is used for connecting the structure isolated from seismic events with common structures, the seismic risk is expected to rise significantly. In this study, the limit state of the steel pipe tee, which is a vulnerability part of the nuclear power plant piping system, was defined as leakage, and an in-plane cyclic loading test was conducted. As it is difficult to measure the moment and rotation of the steel pipe tee using the conventional sensors, an image signal was used. This study proposed a leakage line and low-cycle fatigue curves using the relationship between the moment and the rotation of a 3-inch steel pipe tee.

NUMERICAL ANALYSIS FOR UNSTEADY THERMAL STRATIFIED FLOW WITH HEAT TRACING IN A HORIZONTAL CIRCULAR CYLINDER

  • Jeong, Ill-Seok;Song, Woo-Young;Park, Man-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.304-309
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external Denting to the thermally stratified flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt numbers of fluids and pipe walls with time are analyzed in case of externally heating condition. no numerical result of this study shows that the maximum dimensionless temperature difference between the hot and the cold sections of pipe inner wall is 0.424 at dimensionless time 1,500 ann the thermal stratification phenomena is disappeared at about dimensionless time 9,000. This result means that external heat tracing can mitigate the thermal stratification phenomena by lessening $\Delta$ $T_{ma}$ about 0.1 and shortening the dimensionless time about 132 in comparison with no external heat tracing.rnal heat tracing.

  • PDF

Application of Time Frequency Analysis to On Line Monitoring of Pipe Corrosion (시간-주파수 분석을 이용한 파이프 부식감시)

  • Park, G.Y.;Lee, C.K.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2616-2618
    • /
    • 2005
  • Time-frequency analysis (TFA) method was applied to identify the integrity of the internal local surface of a pipe where some chemical corrosions are likely to occur by acid mixed in the coolant of nuclear power plants. The spalling out of internal material pieces by corrosion induces some transient signals and the change of structural vibration of a local point in the pipe. It is therefore possible to detect the corrosion detachment through the measurement of the transient acoustic signals or the vibration signals. In this presentation, the TFA was configured on the vibrational signal data of the pipe and it is identified that the TFA can Provide an important information, i.e., the amplitude fluctuations in the instantaneous frequency of each characteristic frequency.

  • PDF

Modeling of Heat Transfer Equations for Estimation of Temperature Variations Inside the Oil Transport Pipe Line (원유 수송관 내부의 온도 변화 예측 을 위한 열전달 방정식의 모델링)

  • Jin, J.J.;Chung, H.T.;Bae, J.S.;Lee, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.300-303
    • /
    • 2008
  • In the present study, the simple form of the heat transfer equation were suggested to estimate the temperature variation inside the oil pipe in order to determine the thickness of the insulating materials to retain the working oils below the critical temperature. The conservation of the thermal energy at arbitrary time were modeled to one dimensional unsteady equation with the empirical formula or data. The calculating results for non-insulation case showed that the temperature were very sensitive to the thermal convection by the velocity of the external wind. For insulation case, the insulation material which has higher density and specific heat, lower thermal conductivity should be chosen with more brighter coloring outside the pipe in order to retain the working oils below the critical temperature.

  • PDF

A Characteristics of Transient fluid flow in a Hydraulic circular pipe (유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究))

  • Kim, H.J.;Jung, J.C.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

An Experimental Study on Vibration Control of Water Hammering in Water Pipe System (급수배관시스템의 수충격 진동제어를 위한 실험적 연구)

  • Lee, Jang-Hyun;Lee, Hyo-Haeng;Kwon, Byoung-Ha;Oh, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.453-458
    • /
    • 2008
  • Pump of high lift use to development of a technological level according as a building grow big. Water-Hammer to increase by valve of fast to closing agreeably to pipe laying to accept electronic valve, because by a damage of piping-system and the devil knows injury of vibration. Water-Hammer take a low effect to various method for solve. A New type manufacture develop and testing of pipe line to same to axis use to accumulator for water-Hammer to low effect and liner control of pressure. Impact-pressure of absorption ability and confirmation to decrease of vibration level through to preexistence manufactures and comparative test. Water-hammer and pipe vibration make low of piping system.

  • PDF

Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping (직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

Sanitary Plumbing System Design of High-rise Building (초고층 건축물의 위생설비 시스템 설계)

  • Ju, Duck-Hoon;Byun, Woon-Seob;Yun, Hae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.491-496
    • /
    • 2009
  • Recently, the high-rise building has been constructed competitively because it is symbol of the national competitive power including the technical power. The higher buildings are getting, the more important building mechanical systems are. So, the building mechanical systems are getting developed. Among the building mechanical systems, the sanitary system is basically necessary in order to maintain the building hygienically along with convenience and safety. This study has been investigated for various cases of high-rise building plumbing system. As a result, a variety of zoning method has been applied to most skyscrapers depending on the building height in the building mechanical system. And a variety of joint have been applied to minimize the Shortening and Sway. Also, the drainage in same uses has been discharged outside of a build through the one vertical pipe line. And airing system has been used like Individual Vent Pipe Yoke Vent Pipe Stack Vent Pipe Loop Vent Pipe Relief Vent Pipe method. It is sure that this study could be used as the high-rise building design.

  • PDF

A research on the design parameters for a double-transmission main system for sustainable water supply (이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구)

  • Hyun, Inhwan;Hong, Juneui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

Development of the Computational Model to Evaluate Integrated Reliability in Water Distribution Network (상수관망의 통합신뢰도 산정을 위한 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.105-115
    • /
    • 2003
  • The computation model which evaluates combined hydraulic and mechanical reliability, is developed to analyze the integrated reliability in water distribution system. The hydraulic reliability is calculated by considering uncertain variables like water demand, hydraulic pressure, pipe roughness as random variables according to proper distribution type. The mechanical reliability is evaluated by analyzing the effect of pipe network with sequential failure of network components. The result of this study model applied to the real pipe network shows that this model can be used to simulate the uncertain factors effectively in real pipe network. Therefore, The pipe-line engineers can design and manage the network system with more quantitative reliability, through applying this model to reliable pipe network design and diagnosis of existing systems.