• Title/Summary/Keyword: line impedance

Search Result 935, Processing Time 0.02 seconds

A Study on the Radiation Characteristics of Microstrip Array Antennas on the Nonplanar Surface (곡면에서의 마이크로스트립 어레이 안테나의 복사 특성에 관한 연구)

  • 구연건;이정수;고광태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.121-136
    • /
    • 1989
  • In this paper, an attempt has been made to analyze the theoretically and verify experimentally the effect of curvature on the radiation characteristics of microstrip array antennas mounted conformally on the concave surface and the convex surface of the cylindrical body. The analysis of single element microstrip antenna is made by using the analysis method of Transmission Line Model. The theory of array antennas is established by application of the method of transformed coordinates, in which the translation and the ratation about each single element arrayed two-demensionally on the nonplanar surface are under consideration, and it is investigated by computation of the synthetic electric field strength in the far zone. In addition, various radiation characteristics, such as return loss, resonant frequency, radiation pattern, half-power, beamwidth, gain, are measrued and compared with the theroetical values according to the variation of curvature, by designing and building 4-element array microstrip antenna operating at 10 GHz, and microstrip feed lines. As predicted in theroy, it is verified that radiation pattern of antennas mounted on the concave and the convex surfaces alike broadens as the radius of curvature decreases. And for the curved surfaces, aggrement between computed values of the total synthetic radiation power pattern by the method of transformed coordinates and measured valuse is good. Besides, it is found that resonant frequency, input impedance and gain are hardly affected by the radius of curvature.

  • PDF

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

Study on the Fabrication of the Low Loss Transmission Line and LPF using MEMS Technology (MEMS 기술을 이용한 저 손실 전송선로와 LPF의 공정에 관한 연구)

  • 이한신;김성찬;임병옥;백태종;고백석;신동훈;전영훈;김순구;박현창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1292-1299
    • /
    • 2003
  • In this paper, we fabricated new GaAs-based dielectric-supported air gapped microstriplines(DAMLs) using the surface MEMS and the LPF for Ka-band using the fabricated DAMLs. We elevated the signal lines from the substrate, in order to reduce the substrate dielectric loss and obtain low losses at millimeter-wave frequency band with wide impedance range. We fabricated LPF with DAMLs for Ka-band. Due to reducing the dielectric loss of DAMLs, the insertion loss of LPF can be reduced. Miniature is essential to integrate LPF with active devices, so that we fabricated LPF with the slot on the ground to reduce the size of the LPF. We compared a characteristic to LPF with the slot and LPF without the slot.

A Study on the Design of Microwave Oscillator Output Matching Circuit Using 3-dB Coupler Tuner (3-dB Coupler Tuner를 이용한 초고주파 발진기의 출력 정합회로 설계에 관한 연구)

  • 이석기;오재석;이영순;김병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.171-178
    • /
    • 1998
  • Generally, the output matching circuit has the most influence to the output power of oscillator and existing method for output matching has difficulty for making the optimum output matching circuit because the matching has to be done nearby the infinite impedance area of the Smith Chart. In this paper, it is studied for the output matching circuit of the microwave oscillator to get the maximum output power. The maximum output point can be found by adjusting the position of moving short in the Tuner while the oscillator is operating after connect the 3-dB coupler Tuner to the oscillator without output matching circuit. To design the oscillator for the maximum output power can be done easily with the microstrip line which is realized from the measured S-parameters of Tuner. In compare the oscillator by the existing method with another one by the suggested method in this paper, the first one has 6.45 dBm output power and second one has 9.71 dBm which is 3.26 dBm higher than the first one at the oscillation frequency 1.0338 GHz.

  • PDF

Design of Wideband Electromagnetic Wave Absorber Using Magnetic Materials (자성재료를 이용한 광대역 전자파 흡수체 설계 연구)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.210-215
    • /
    • 2012
  • The absorption performance of a metal-backed single layered electromagnetic wave absorber is optimized at matching conditions of thickness and frequency indicating the maximum returns loss of incidence electromagnetic wave in the contour map. These matching conditions are obtained by applying the electromagnetic impedance to the transmission line theory, which depend on the complex permeability and complex permittivity of absorber material. The magnetic materials with high permeability can enhance the matching thickness condition to the wide frequency range based on the decrease of permeability with frequency and it can be used as a wideband electromagnetic wave absorber material. Therefore, the magnetic materials with higher saturation magnetization and lower permittivity than NiZn ferrite can be applied to the wideband electromagnetic wave absorber in order to satisfy the newly enforcing the electromagnetic compatibility regulation in the future.

A Study on Rectangular Planar Monopole Antenna with a Double Sleeve Using Half Cutting (하프 커팅을 이용한 이중 슬리브를 갖는 직사각형 평면 모노폴 안테나에 관한 연구)

  • Kang, Sang-Won;Chang, Tae-Soon;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this paper, we proposed a rectangular planar monopole antenna with a double sleeve that applied to a half-cut and a discontinuous feed structure. A rectangular planar monopole antenna with a double sleeve was cut in half along the magnetic symmetry line, and impedance matching was achieved by a discontinuous structure was applied to a feeder and by adjusting the double sleeve gap. We used the HFSS simulator of ANSYS company to confirm the antenna parameter property, and the antenna size was $21{\times}40mm^2$. In the proposed antenna, the simulation frequency range with VSWR of 2 or less was 2.6GHz to 10.25GHz. The bandwidth was 7.65GHz. The frequency range of the fabricated antenna was 3.3GHz to 9.75GHz, and the bandwidth was 6.45GHz. The measured radiation pattern frequencies were 3.5GHz, 5.5GHz, 7.5GHz, and 9.5GHz. A radiation pattern similar to the dipole antenna pattern was obtained at all frequencies.

Design and Fabrication of Monopole Antenna with Three Branch Strips and Rectangular Slit Ground for WLAN/WiMAX Applications (무선랜과 와이맥스 시스템에 적용 가능한 브랜치 라인과 사각 슬릿 접지를 갖는 모노폴 안테나 설계와 제작)

  • Koo, Yung-Seo;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.611-620
    • /
    • 2011
  • A planar monopole antenna that was developed for WLAN/WiMAX application is presented in this paper. The proposed antenna with three strips, an asymmetrical ground plane, and a rectangular slit in the ground is designed to cover the popular frequency spectrum of WLAN (wireless local area network) bands and WiMAX (Worldwide Interoperability for Microwave Access) bands. The proposed antenna, which is capable of wideband operation, is fed by a strip line and fabricated on an FR-4 substrate. The obtained numerical results agree well with the experiment data. It was validated that the configuration can meet the demands for the WLAN/WiMAX systems and effectively enhanced the impedance bandwidth to 9.95% for the lower band and 76.05% for the upper band for VSWR < 1 : 2. This paper also presents and discusses the 2D radiation patterns and 3D gains according to the results of the experiment.

A Study on the Analysis of the Microstrip Line by Using Inner Source at the FDTD Method (유한차분 시간영역 해석법에 내부전원을 이용한 마이크로스트립 선로 해석에 관한 연구)

  • 윤성현;정수길;손창수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.567-577
    • /
    • 1998
  • When continuous and discontinuous microstrip is analyzed with FDTD(Finite Difference Time Domain) method, we used Berenger's 3D-PML as absorbing boundary condition, and IST(Inner Source Technique) was used for source excitation instead of front excitation that is existing method. In the case using IST, we have observed that analyzed characteristic is not affected by the reduced computational domain of the side and top face in which evanescent field and radiation field is exist. Also, if we control the position of the inner source, we could effectively reject the influence of the reflective wave by mean of imperfective boundary condition. In this paper, by using IST, we have calculated dispersive characteristic and characteristic impedance of the microstrip. And we have calculated magnitude and phase of the scattering coefficient, and obtained equivalent circuit of the open microstrip end.

  • PDF

Linear Tapered Slot Rectifying Antenna for Portable UHF-Band RFID System (휴대용 UHF대역 RFID 시스템을 위한 선형 테이퍼드 슬롯 정류 안테나)

  • Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.368-371
    • /
    • 2020
  • In this paper, we propose a linear tapered slot rectifying antenna for a portable UHF-band RFID system. Since the proposed rectifying antenna does not use a dielectric substrate, the planar antenna is implemented with a thin metal thickness. The rectifier circuit converts input RF power into output DC voltage using a voltage doubler circuit based on two anti-parallel schottky diodes. The rectifying antenna is integrated by the voltage doubler circuit into a linear tapered slot antenna. For conjugate impedance matching of the rectifying circuit and the linear tapered slot antenna, the source-pull method was utilized by adjusting the angle of the tapered slot and the length of the antenna feed line. The proposed antenna prototype has been verified with the electrical and radiation characteristics through RF-DC conversion and far-field radiation test in open space measurement environment. Finally, the proposed antenna is realized to 0.23-wavelength (75 mm) and 0.18-wavelength (60 mm) at 915 MHz center frequency.

IGBT DC Circuit Breaker with Paralleled MOV for 1,800V DC Railway Applications (직류 철도용 MOV 병렬연결 1,800V급 IGBT 직류 고속차단기 연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Ju-Rak;Chang, Sang-Hoon;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2109-2112
    • /
    • 2016
  • The rate of rise of the fault current in DC grids is very high compared to AC grids because of the low line impedance of DC lines. In AC grids the arc of the circuit breaker under current interruption is extinguished by the zero current crossing which is provided naturally by the system. In DC grids the zero current crossing must be provided by the circuit breaker itself. Unlike AC girds, the magnetic energy of DC grids is stored in the system inductance. The DC circuit breaker must dissipate the stored energy. In addition the DC breaker must withstand the residual overvoltage after the current interruption. The main contents of this paper are to ${\cdot}$ Explain the theoretical background for the design of DC circuit breaker. ${\cdot}$ Develop the simulation model in PSIM of the real scaled DC circuit breaker for 1,800V DC railway. ${\cdot}$ Suggest design guidelines for the DC circuit breaker based on the experimental work, simulations and design process.