• 제목/요약/키워드: line impedance

검색결과 935건 처리시간 0.031초

전력선 통신 시스템의 입력 임피던스 계산 (Input Impedance Calculation of the Power Line Communication System)

  • 천동완;이진택;박영진;김관호;신철재
    • 한국통신학회논문지
    • /
    • 제29권9A호
    • /
    • pp.983-990
    • /
    • 2004
  • 본 논문에서는 중 전압 전력선을 이용한 전력선 통신대 LC) 네트워크의 입력임피던스를 계산하였다. 먼저 전송 선로 모델을 이용하여 전력선 통신 네트워크의 입출력 단 모델을 제시하였으며, 여기에 전력선의 방사성 손실, 도체손실, 유전체 손실 등에 의한 감쇠상수를 적용시켜 임피던스를 계산하였다 계산결과 방사성 손실에 의한 강쇠 가 가장 크게 나타났으며, 전력선의 특정임피던스가 매우커서 입력 단에서의 반사가 심하기 때문에 입력임피던스 가 일정한 주기를 가지는 정재파 형태로 나타남을 알 수 있었다 또한 입력임피던스의 주기는 동축선로의 길이에 주로 의존하고, 크기는 주로 전력선의 특성임피던스 및 손실에 의존하였다 실제 측정결과 계산 치와 측정치가 매 우 유사함을 알 수 있었다.

Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters

  • Le, Phuong Minh;Pham, Xuan Hoa Thi;Nguyen, Huy Minh;Hoang, Duc Duy Vo;Nguyen, Tuyen Dinh;Vo, Dieu Ngoc
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.234-250
    • /
    • 2018
  • This paper presents a new load sharing control for use between paralleled three-phase inverters in an islanded microgrid based on the online line impedance estimation by the use of a Kalman filter. In this study, the mismatch of power sharing when the line impedance changes due to temperature, frequency, significant differences in line parameters and the requirements of the Plug-and-Play mode for inverters connected to a microgrid has been solved. In addition, this paper also presents a new droop control method working with the line impedance that is different from the traditional droop algorithm when the line impedance is assumed to be pure resistance or pure inductance. In this paper, the line impedance estimation for parallel inverters uses the minimum square method combined with a Kalman filter. In addition, the secondary control loops are designed to restore the voltage amplitude and frequency of a microgrid by using a combined nominal value SOGI-PLL with a generalized integral block and phase lock loop to monitor the exact voltage magnitude and frequency phase at the PCC. A control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of power sharing. The simulation results demonstrate the accuracy of the proposed control method.

A Coupled Line Impedance Transformer for High Termination Impedance with a Bandpass Filtering Response

  • Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.41-45
    • /
    • 2018
  • In this study, a short-ended coupled line with a short-circuit stub transmission line bandpass filtering impedance transformer is presented. The general designed equations are derived on the basis of circuit theory. The design curves are provided to examine the characteristic of the proposed impedance transformer. The proposed circuit is suitable for high termination impedance. To validate the design formulas, a $400-50{\Omega}$ impedance transformer is designed and fabricated at the operating center frequency ($f_0$) of 2.6 GHz. The measured results show a good agreement with the simulation. The measured insertion and return losses are 0.6 dB and 22.5 dB at $f_0$, respectively. The measured return loss is higher than 20 dB within the passband frequency of 2.51-2.7 GHz. Moreover, the stopband attenuation is higher than 25 dB from DC to 1.64 GHz of the lower stopband and from 3.12 GHz to 6.4 GHz of the higher stopband.

지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용 (Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables)

  • 최종기;장병태;안용호;최상규;이명희
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

A Boundary Protection for Power Distribution Line Based on Equivalent Boundary Effect

  • Zhang, Xin;Mu, Long-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.262-270
    • /
    • 2013
  • A boundary protection method for power distribution line based on equivalent boundary effect is presented in this paper. In the proposed scheme, the equivalent resonance component with a certain central frequency is sleeve-mounted at the beginning of protected zone. The 'Line Boundary' is built by using boundary effect, which is created by introducing impedance in the primary-side of line. The 'Line Boundary' is significantly different from line wave impedance. Therefore, the boundary protection principle can be applied to power distribution line without line traps. To analyze the frequency characteristic corresponding to traveling-waves of introducing impedance in the primary-side of line, distributed parameters model of equivalent resonance component is established. The results of PSCAD/EMTDC simulation prove the obvious difference of voltage high frequency component between internal faults and external faults due to equivalent resonance component, and validate the scheme.

병렬 연결된 전송선로를 이용한 비대칭 전력 분배기 (Unequal Power Divider using Parallel Connection Transmission Line)

  • 권상근;김영;윤영철
    • 한국항행학회논문지
    • /
    • 제17권2호
    • /
    • pp.202-207
    • /
    • 2013
  • 본 논문에서는 병렬 연결된 전송선로를 이용하여 고 비율 비대칭 전력 분배기를 설계하였다. 병렬 연결된 전송선로는 마이크로스트립 기술로 구현하기 어려운 낮은 임피던스의 전송선로를 높은 임피던스 전송선로로 구현하는 방법이다. 비율 비대칭 분배기 구현 시 사용되는 낮은 임피던스를 구현하기 위하여 병렬 연결된 전송선로를 이용함으로서 구현을 쉽게 할 수 있었다. 이러한 설계방법의 타당성을 보이기 위해서 중심 주파수 1 GHz에서 10:1 비율의 비대칭 전력 분배기를 제작하였고, 이것의 특성은 시뮬레이션과 거의 동일함을 확인하였다.

약 결합된 Meander Line의 단일전송선 Parameter의 해석적 계산 (Analytic Derivation of Single Transmission Line Parameters for Weakly Coupled Meander Line)

  • 염경환;강명숙
    • 한국전자파학회논문지
    • /
    • 제11권5호
    • /
    • pp.738-747
    • /
    • 2000
  • 본 논문에서 낮은 주파수 영역에서는 약 결합된 meander line은 근사적으로 단일 전송선으로 취급할 수 있음을 증명하였다. 이 때 meander line의 특성 impedance는 이 meander line에서 coupling을 무시할 때 단일전송선의 특성 impedance와 같으며, 반면 이것의 등가길이는 coupling없이 계산된 길이에 비해서는 수축되는 것을 보았다. 얻어진 해석적 결과는 회로 simulation 결과와 비교되었으며 또한 EM simulation 결과와 비교결과 결과식은 약 결합시에는 잘 일치하는 것을 알 수 있었다.

  • PDF

Basic Study on RF Characteristics of Thin-Film Transmission Line Employing ML/CPW Composite Structure on Silicon Substrate and Its Application to a Highly Miniaturized Impedance Transformer

  • Jeong, Jang-Hyeon;Son, Ki-Jun;Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.10-15
    • /
    • 2015
  • A thin-film transmission line (TFTL) employing a microstrip line/coplanar waveguide (ML/CPW) was fabricated on a silicon substrate for application to a miniaturized on-chip RF component, and the RF characteristics of the device with the proposed structure were investigated. The TFTL employing a ML/CPW composite structure exhibited a shorter wavelength than that of a conventional coplanar waveguide and that of a thin-film microstrip line. When the TFTL with the proposed structure was fabricated to have a length of ${\lambda}/8$, it showed a loss of less than 1.12 dB at up to 30 GHz. The improvement in the periodic capacitance of the TFTL caused for the propagation constant, ${\beta}$, and the effective permittivity, ${\varepsilon}_{eff}$, to have values higher than those of a device with only a conventional coplanar waveguide and a thin film microstrip line. The TFTL with the proposed structure showed a ${\beta}$ of 0.53~2.96 rad/mm and an ${\varepsilon}_{eff}$ of 22.3~25.3 when operating from 5 to 30 GHz. A highly miniaturized impedance transformer was fabricated on a silicon substrate using the proposed TFTL for application to a low-impedance transformation for broadband. The size of the impedance transformer was 0.01 mm2, which is only 1.04% of the size of a transformer fabricated using a conventional coplanar waveguide on a silicon substrate. The impedance transformer showed excellent RF performance for broadband.

A Study of Impedance Matching Circuit Design for PLC

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.453-458
    • /
    • 2009
  • This paper presents two methods of designing a Broadband Impedance Matching (BIM) circuit for maximizing a power line communication (PLC) equipment (or Modem) signal injection into its load at any power line connection port. This optimal (BIM) circuit design is achieved in two phases: Butterworth gain function and Tchebycheff gain function. According to the comparison of simulation and practical results, the performances of two gain functions on BIM are discussed.

Comparison of Different Methods for Line Impedance Estimation

  • 알레미파얌;서보환;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.454-455
    • /
    • 2010
  • This paper surveys recent works in line impedance estimation. Inverters used in distribution system are often connected to the grid through LCL filter. Different methods are investigated for estimating the line impedance. Advantages and disadvantages with brief summary for each method are presented. Simulation results for a specified grid are shown for two main different methods and the results are compared with estimation error.

  • PDF