• Title/Summary/Keyword: line feature detection

Search Result 131, Processing Time 0.024 seconds

Optical Design and Construction of Narrow Band Eliminating Spatial Filter for On-line Defect Detection (온라인 결함계측용 협대역 제거형 공간필터의 최적설계 및 제작)

  • 전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.59-67
    • /
    • 1998
  • A quick and automatic detection with no harm to the goods is very important task for improving quality control, process control and labour reduction. In real fields of industry, defect detection is mostly accomplished by skillful workers. A narrow band eliminating spatial filter having characteristics of removing the specified spatial frequency is developed by the author, and it is proved that the filter has an excellent ability for on-line and real time detection of surface defect. By the way,. this spatial filter shows a ripple phenominum in filtering characteristics. So, it is necessary to remove the ripple component for the improvement of filter gain, moreover efficiency of defect detection. The spatial filtering method has a remarkable feature which means that it is able to set up weighting function for its own sake, and which can to obtain the best signal relating to the purpose of the measurement. Hence, having an eye on such feature, theoretical analysis is carried out at first for optimal design of narrow band eliminating spatial filter, and secondly, on the basis of above results spatial filter is manufactured, and finally advanced effectiveness of spatial filter is evaluated experimentally.

  • PDF

An Improved Hough Transform Using Valid Features (유효 특징점을 이용한 개선된 허프변환)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2203-2208
    • /
    • 2014
  • The Hough transform (HT), that is a typical algorithm for detecting lines in images, needs considerable computational costs and easily detects pseudo-lines on the real world images, because of the large amount of features generated by their complex background or noise. This paper proposes an improved HT that add a preprocessing to estimate the validity of features to the conventional HT. The feature estimation can remove a lot of inessential features for the line detection using a pattern of $3{\times}3$ block features. Experiments using various images show that the proposed algorithm saves computational costs by removing 14%~58% of features depending on images and besides it is superior to the conventional HT in valid line detection.

Automatic Speechreading Feature Detection Using Color Information (색상 정보를 이용한 자동 독화 특징 추출)

  • Lee, Kyong-Ho;Yang, Ryong;Rhee, Sang-Burm
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2008
  • Face feature detection plays an important role in application such as automatic speechreading, human computer interface, face recognition, and face image database management. We proposed a automatic speechreading feature detection algorithm for color image using color information. Face feature pixels is represented for various value because of the luminance and chrominance in various color space. Face features are detected by amplifying, reducing the value and make a comparison between the represented image. The eye and nose position, inner boundary of lips and the outer line of the tooth is detected and show very encouraging result.

  • PDF

Performance Enhancement of Marker Detection and Recognition using SVM and LDA (SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상)

  • Kang, Sun-Kyoung;So, In-Mi;Kim, Young-Un;Lee, Sang-Seol;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.923-933
    • /
    • 2007
  • In this paper, we present a method for performance enhancement of the marker detection system by using SVM(Support Vector Machine) and LDA(Linear Discriminant Analysis). It converts the input image to a binary image and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds quadrangle by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted quadrangle into exact squares by using the warping technique and scale transformation. It extracts feature vectors from the square image by using principal component analysis. It then checks if the square image is a marker image or a non-marker image by using a SVM classifier. After that, it computes feature vectors by using LDA for the extracted marker images. And it calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the proposed method achieves enhancement of recognition rate with smaller feature vectors by using LDA and it can decrease false detection errors by using SVM.

  • PDF

Simplified Representation of Image Contour

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2018
  • We use edge detection technique for the input image to extract the entire edges of the object in the image and then select only the edges that construct the outline of the object. By examining the positional relation between these pixels composing the outline, a simplified version of the outline of the object in the input image is generated by removing unnecessary pixels while maintaining the condition of connection of the outline. For each pixel constituting the outline, its direction is calculated by examining the positional relation with the next pixel. Then, we group the consecutive pixels with same direction into one and then change them to a line segment instead of a point. Among those line segments composing the outline of the object, a line segment whose length is smaller than a predefined minimum length of acceptable line segment is removed by merging it into one of the adjacent line segments. As a result, an outline composed of line segments of over a certain length is obtained through this process.

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

A Syntactic and Semantic Approach to Fingerprints Classification (구문론과 의미론적 방법을 이용한 지문분류)

  • Choi, Young-Sik;Sin, Tae-Min;Lim, In-Sik;Park, Kyu-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1157-1159
    • /
    • 1987
  • A syntactic and semantic approach is used to make type classification based on feature points(whorl, delta, core) and the shape of flow line around feature points. The image is divided into 30 by 30 subregions which are represented in the average direction and 4-tuple direction component. Next the relaxation process with singularity detection and convergency checking is performed. A set of semantic languages is used to describe the major flow line around the extracted feature points. LR(1) parser and feature transfer function are used to recognize the coded flow patterns. The 72 fingerprint impressions is used to test the proposed approach and the rate of the classification is about 93 percentages.

  • PDF

Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction (필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘)

  • Kim, Chang-Min;Lee, Woo-Beom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • As the layers of artificial neural network deepens, and the dimension of data used as an input increases, there is a problem of high arithmetic operation requiring a lot of arithmetic operation at a high speed in the learning and recognition of the neural network (NN). Thus, this study proposes a data dimensionality reduction method to reduce the dimension of the input data in the NN. The proposed Line-segment Feature Analysis (LFA) algorithm applies a gradient-based edge detection algorithm using median filters to analyze the line-segment features of the objects existing in an image. Concerning the extracted edge image, the eigenvalues corresponding to eight kinds of line-segment are calculated, using 3×3 or 5×5-sized detection filters consisting of the coefficient values, including [0, 1, 2, 4, 8, 16, 32, 64, and 128]. Two one-dimensional 256-sized data are produced, accumulating the same response values from the eigenvalue calculated with each detection filter, and the two data elements are added up. Two LFA256 data are merged to produce 512-sized LAF512 data. For the performance evaluation of the proposed LFA algorithm to reduce the data dimension for the recognition of handwritten numbers, as a result of a comparative experiment, using the PCA technique and AlexNet model, LFA256 and LFA512 showed a recognition performance respectively of 98.7% and 99%.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.