• Title/Summary/Keyword: line capacity

Search Result 1,069, Processing Time 0.041 seconds

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

A Reassessment for Dynamic Line Rating of Aged Overhead Transmission Lines in Kepco's Network (한국전력 노후 가공송전선의 동적송전용량에 대한 재평가)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.123-129
    • /
    • 2010
  • During the past 2 decades, many electric power companies have been searching various solutions in order to supply power with economical and more efficiency in the present transmission utilities. Most interesting method to increase the line capacity of overhead transmission lines without constructing any new line might be to adapt Dynamic Line Rating(DLR). Specified rating is normally determined by any current level, not by conductor temperature. Although specified rating is essential to design transmission line, dip may be the most important factor in limiting transmission capacity. Transmission lines built by the oldest dip criterion among the 3 different design criteria for conductor dip are nearly over one-half of all Kepco's transmission lines. This paper describes an up-rating method for those transmission lines in order to apply DLR technique. Based on limit dip conductor temperature and current of the transmission lines, limitation performance and effectiveness in applying DLR with weather model are analyzed. As a result of analysis, it can be shown that an improved method could be effectively used for increasing the line rating of old transmission line which was built by the design criterion with low dip margin.

The Study for Rolling Stock System Design of Ho-Nam High Speed Railroad of Korea (호남고속철도 차량 시스템 설계에 관한 연구)

  • 박광복
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.358-369
    • /
    • 2001
  • KTX will be operated on Kyun-Pu High Speed Railroad Line around end of 2,003 and KHST(G7 Korea High Speed Train) will be carried out the development running test at Kyun-Pu High Speed Railroad Line from middle of 2002. By the way, the conventional Ho-Nam railroad line was passed the limit capacity of transportation at some area from 1997. For solving of this matter, Ho-Nam railroad line need new high speed railroad line for high transportation capacity of passengers now. This report was studied about the rolling stock system design used new technology of KHST and KTX for Ho-Nam High Speed Railroad.

  • PDF

Analysis of system power flow margin on replacement of transmission line to DC line (송전선로 DC화에 따른 융통조류 마진 분석)

  • Hwang, Sungchul;Lee, Jaehyeong;Hwang, Pyungik;Yoon, Minhan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.420-421
    • /
    • 2015
  • Recently construction of new transmission line is getting harder because of social hostility to transmission tower. Howevere, load is converged in metropolitan area and power plants near this area are old and life of generator will end soon. Therefore, power to supply load in this area should be transmitted from east coast area and southern area. For these reasons, securement of transmission capacity without new transmission line construction is important. In this paper, effect of one circuit AC line change to DC transmission at the same transmission tower on the system available transfer capacity is analyzed.

  • PDF

Performance Analysis of the Block Production Line in an Engine Production Plant (엔진 블록 가공라인의 물류분석)

  • 김상훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.105-109
    • /
    • 1999
  • Tool shop of the D Heavy Industries Co.(DHI) fabricates engines for a bus, truck, small ship. In order to increase the production capacity of engines, DHI will be established the new tool shop that consists of a block line, head line, assembly line, test line and AS/RS in 1999. In order to assure the production capacity designed of the new tool shop for producing engines and improve the production process of it, it is needed to find a bottleneck process and an optimal way of allocating workloads among machines and workers to maximize the production. In a way to solve this, we model the engine fabrication process of the tool shop and analyze its performance by computer simulation. In this study, we at first identify the bottleneck processes of the engine fabrication process under the designed operation policy. Then, we derive some alternative operating policies applicable to the new tool shop of an engine, and analyze the optimal operation policy by comparing the performance of the tool shop following each alternative policy.

  • PDF

An Algorithm for the Efficient Operation of the U-Shaped Line (생산율에 따른 U-라인의 효율적인 운용 알고리즘)

  • 박승헌
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.173-185
    • /
    • 2004
  • The production using U-shaped line is studied. This research presents the relationship among machining time, cycle time and production rate in a U-shaped line. The U-shaped line produces shafts by automated machines. In this paper when any production rate is given the U-shaped line always satisfies the production rate. An algorithm is developed for the determination of cycle time, the number of machines and workers of the U-shaped line in order to minimize the total machine capacity and the number of workers for any given production rate. The U-shaped line was successfully designed by applying the proposed algorithm.

Analysis of Strategies for Installing Parallel Stations in Assembly Systems

  • Leung, John W.K.;Lai, K.K.
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • An assembly system (AS), a valuable tool for mass production, is generally composed of a number of workstations and a transport system. While the workstations perform some preplanned operations, the transport system moves the assemblies by special designed pallets from one station to another. One common problem associated with automatic assembly systems is that some assembly operations may have relatively long cycle times. As a consequence, the productivity, as determined by the operations with the longest cycle time, can be reduced significantly. Therefore, special forms of parallel workstations were developed to improve the performance of an assembly system. In this paper, three most commonly used parallel stations: on-line, off-line and tunnel-gated stations in a free transfer assembly system are studied via discrete event simulation. Our findings revealed that the off-line parallel system has the best performance because the two independent parallel stations can lower the buffer requirement; reduce the sensitivity to variability of processing time and balance of a line. On-line parallel systems were found to have a relatively poor performance, because the operations of two parallel stations block each other, and higher buffer capacity is required to achieve similar capacity. The tunnel-gated system was more efficient than the on-line system since the first parallel station can operate independently. More importantly, we have quantified the productivity of the three different strategies mentioned. Engineers can choose the optimal strategies for installing parallel stations under their working environment.

A Study on Construction of Metro Rapid Transit Network in Daegu Area (철도와 지역발전 - 대구권 광역전철망 구상과 지역발전 효과)

  • Han, Keun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06b
    • /
    • pp.27-41
    • /
    • 2008
  • Construction of metro transportation infra is a large-scale project requiring tremendous financial resources. This study suggests operation method to use for rapid transit line existing infra such as Gyeongbu line and spare line capacity following second phase KTX construction. Reviewing various constraints of metro rapid transit operation, we found that the conditions for metro rapid transit operation are already satisfied in Daegu area, just like the case of Gyeongbu line in Seoul Metro area. Also, the evaluation of the economic feasibility of metro rapid transit operation in Daegu area shows that B/C is about 2.4, which implies that there is sufficient economic feasibility. According to the result of sensitivity analysis, the project is economically feasible unless the passenger demand decreases 15% and construction costs increases more than 70%. B/C is evaluated large because the utilization of already exiting infra lowers the initial cost. As one of mass transportation system of large capacity, metro rapid transit can generate significant spillover effect: It will strengthen competitiveness of metro area by connecting cities within the area and by extending one-day life zone of the area, to say nothing of the benefit of improving traffic condition. The construction of metro rapid transit network is necessary for the mass transportation system of Yeongnam area as well as Daegu area, and it may work as a starting point for uniting Daegu and Gyeongbuk and strengthening regional competitiveness.

  • PDF

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.