• Title/Summary/Keyword: limits of stability

Search Result 351, Processing Time 0.029 seconds

Geotechnical engineering behavior of biopolymer-treated soft marine soil

  • Kwon, Yeong-Man;Chang, Ilhan;Lee, Minhyeong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.453-464
    • /
    • 2019
  • Soft marine soil has high fine-grained soil content and in-situ water content. Thus, it has low shear strength and bearing capacity and is susceptible to a large settlement, which leads to difficulties with coastal infrastructure construction. Therefore, strength improvement and settlement control are essential considerations for construction on soft marine soil deposits. Biopolymers show their potential for improving soil stability, which can reduce the environmental drawbacks of conventional soil treatment. This study used two biopolymers, an anionic xanthan gum biopolymer and a cationic ${\varepsilon}-polylysine$ biopolymer, as representatives to enhance the geotechnical engineering properties of soft marine soil. Effects of the biopolymers on marine soil were analyzed through a series of experiments considering the Atterberg limits, shear strength at a constant water content, compressive strength in a dry condition, laboratory consolidation, and sedimentation. Xanthan gum treatment affects the Atterberg limits, shear strength, and compressive strength by interparticle bonding and the formation of a viscous hydrogel. However, xanthan gum delays the consolidation procedure and increases the compressibility of soils. While ${\varepsilon}-polylysine$ treatment does not affect compressive strength, it shows potential for coagulating soil particles in a suspension state. ${\varepsilon}-Polylysine$ forms bridges between soil particles, showing an increase in settling velocity and final sediment density. The results of this study show various potential applications of biopolymers. Xanthan gum biopolymer was identified as a soil strengthening material, while ${\varepsilon}-polylysine$ biopolymer can be applied as a soil-coagulating material.

Improved Real-Time Variable Speed Limits for a Stable Controlling of the Freeway (안정적인 고속도로 통제를 위한 향상된 실시간 가변 속도 제한)

  • Jeon, Soobin;Han, Young Tak;Seo, Dong Mahn;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.405-418
    • /
    • 2016
  • Recently, many researchers have studied the VSL decision method using traffic information in multiple detector zones. However, this method selects incorrect VSL starting points, leading to the selection of the wrong speed control zone and calculation of the wrong VSL, causing traffic congestion. Eventually, the Unstable VSL system causes more congestion on the freeway. This paper proposes an improved VSL algorithm stably operated in multiple detector zones on the Korea highway. The proposed algorithm selects a preliminary VSL start station (VSS) expected to end the congestion using the acceleration of stations. It also determines the VSS at each congestion area. Finally, it calculates the VSL relative to the determined VSS and controls the vehicles that enters the traffic congestion zone. The developed strategy is compared with Real-time Variable Speed Limits for Urban Freeway (RVSL) to test the stability and efficiency of the proposed algorithm. The results show that the proposed algorithm resolves the problems of the existing algorithm, demonstrated by the correct VSS decision and the reduction of total travel time by 1-2 minutes.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Oxidative stability of omega-3 dietary supplements according to product characteristics

  • Kwon, Hyeon Jeong;Yun, Ho Cheol;Lee, Ji Yoon;Jeong, Eun Jung;Cho, Hyun Nho;Kim, Da Young;Park, Sung Ah;Lee, Seung Ju;Kang, Jung Mi
    • Analytical Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.215-223
    • /
    • 2020
  • The objectives of the present study were to assess the oxidative stability of South Korean n-3 (omega-3 fatty acid) supplements carried out from 2018 to 2019 and evaluate the influence of product characteristics on oxidative safety. A total of 76 n-3 supplements were analysed for oxidation safety by four markers, including acid value (AV), primary oxidation (peroxide value, PV), secondary oxidation (p-anisidine value, pAV) and total oxidation value (TOTOX). Among the supplements tested, 5.3 %, 55.3 %, 28.9 % and 46.1 % exceeded the international voluntary recommended levels for AV, PV, pAV and TOTOX, respectively. Purity (%) of products, remainder of expiration date (suggested shelf life), package in press through package (PTP) and products with additives had statistically significant differences oxidation assessment levels (p < 0.05). In addition, n-3 group found in Algae oil had significantly lower AV levels than the group that did not, and product with Alaska pollack oil, had significantly higher pAV levels than without group (p < 0.05). The high oxidation status of South Korean n-3 products in the present study could not be considered a public health problem right now. However, the levels of oxidation may affect a lot the efficacy and safety of using n-3 supplements. Thus, current oxidation safety limits should be reestablished by regulatory bodies to ensure the safety and efficacy of n-3 supplements, so that the standards could be applied to the products available to consumers.

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Effects of Plank Exercise on Abdominal Muscle Thickness and Disability in Subjects With Mild Chronic Low Back Pain (플랭크 운동이 경한 만성 요통 대상자의 복부 근육 두께와 장애에 미치는 영향)

  • Jeong, Hye-jin;Ha, Su-jin;Jeong, Ye-ji;Cho, Woo-hyun;Kim, Jun-ki;Won, Jong-im
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.51-59
    • /
    • 2019
  • Background: Chronic low back pain (CLBP) causes morphological changes in muscles, reduces muscle strength, endurance and flexibility, negatively affects lumbar stability, and limits functional activity. Plank exercise strengthens core muscles, activates abdominal muscles, and improves intra-abdominal pressure to stabilize the trunk in patients with CLBP. Objects: We investigated the effect of plank exercise on abdominal muscle thickness and disability in patients with CLBP. Methods: We classified 33 subjects into 2 groups: An experimental (n1=17) and a control group (n2=16). Patients in the experimental group participated in plank exercise and those in the control group participated in stretching exercise. Patients in both groups attended 20-minute exercise sessions thrice a week for 4 weeks. Abdominal muscle thickness in each subject was evaluated ultrasonographically, and disabilities were assessed using the Oswestry disability index (ODI). Results: Four weeks later, abdominal muscle thickness showed a significant increase over baseline values in both groups (p<.05). Patients in the experimental group reported a more significant increase in the thickness of the external oblique muscle than that in the control group (p<.05). ODI scores in the experimental group were significantly lower after intervention than before intervention (p<.05). Conclusion: Plank exercise increases the thickness of the external oblique muscle and reduces disability secondary to mild CLBP. Therefore, plank exercise is needed to improve lumbar stability and functional activity in patients with mild CLBP.

A Study on the Optimized Balance Module of Security Policy to Enhance Stability in the Service-Based Information System (서비스 기반 정보시스템의 안정성 증대를 위한 보안정책 최적화 균형모듈에 관한 연구)

  • Seo, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1155-1160
    • /
    • 2018
  • Presently in 2018, the security market is requiring progressive development and innovation in the area of security on account of new changes and technologies. This means the rapid and prompt development of the service platforms and service-based information systems. Here, this study is going to examine the process of operating a number of services and obtaining security, not the criteria for selecting particular service in online environment where the various services exist. Within a series of flows to protect the manager's authority about the platforms operated by information systems, and to provide and destroy services, this author limits the entire service platforms of the optimized balance module into four categories maximum for the security of the area apt for illegal invasion and access, and the proper area. Also, about the area with limited security, this researcher again applies subordinate security policy and technology respectively. This author here will suggest a method to provide and to extend safety and security for the information system and also propose the process of applying it as well.