• Title/Summary/Keyword: limiting processes

Search Result 138, Processing Time 0.02 seconds

Nucleation Process of Indium on a Copper Electrode

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • The electrodeposition of indium onto a copper electrode from an aqueous sulfate solution containing $In^{3+}$ was studied by means of cyclic voltammetry and chronoamperometry. Reduction and oxidation of indium on copper were investigated by using cyclic voltammograms at different negative limiting potentials and at different scan rates in cumulative cycles. Cyclic voltammograms indicated that reduction and oxidation processes of indium could involve various reactions. Chronoamperometry was carried out to analyze the nucleation mechanism of indium in the early stage of indium electrodeposition. The non-dimensional plot of the current transients at different potentials showed that the shape of the plot depended on the applied potential. The nucleation of indium at potential step of -0.6~-0.8 V was close to progressive nucleation limited by diffusion. However the non-dimensional plot of current transients for the indium nucleation showed different behaviors from theoretical curves at the potential step lower than -0.8 V.

Experimental study on injection molding parts weight according to foam molding process (발포 성형 공정에 따른 사출 성형품 무게에 관한 실험적 연구)

  • Jung, Hyun-Suk;Hong, Cheong-Min;Lee, Ha-Seong;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • Speaking in general terms the form injection process can be described as a new process-variant of already known structural foam molding technology which roots go back to the early sixties. The most limiting factors of already know foaming processes are large cell size and the lack of uniformity of these cells as well and the inability to foam all kinds of plastic materials. In this paper, Process Study on weight change in injection rate during foaming. Experimental conditions were set as the injection speed 50,150,300 and 450 mm/s. The experiments PA, PA+GF, PP, was confirmed that the weight increase to PP+TA.

  • PDF

The uniform laws of large numbers for the chaotic logistic map

  • Bae, Jongsig;Hwang, Changha;Jun, Doobae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1565-1571
    • /
    • 2017
  • The standard logistic map is an iterative function, which forms a discrete-time dynamic system. The chaotic logistic map is a kind of ergodic map defined over the unit interval. In this paper we study the limiting behaviors on the several processes induced by the chaotic logistic map. We derive the law of large numbers for the process induced by the chaotic logistic map. We also derive the uniform law of large numbers for this process. When deriving the uniform law of large numbers, we study the role of bracketing of the indexed class of functions associated with the process. Then we apply the idea of DeHardt (1971) associated with the bracketing method to the process induced by the logistic map. We finally illustrate an application to Monte Carlo integration.

Large size asymptotics for non-blocking ATM switches with input queueing (입력단 버퍼를 갖는 비차단형 ATM 교환기에서의 large size asymptotics)

  • 김영범
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.10-19
    • /
    • 1998
  • With the advent of high-speed networks, the increasingly stringent performance requeirements are being placed on the underlying switching systems. Under these circumstances, simulation methods for evaluating the performace of such a switch requires vast computational cost and accordingly the importance of anlytical methods increases. In general, the performance analysis of a switch architecture is also a very difficult task in that the conventional queueing system such as switching systems, which consists of a large numbe of queues which interact with each other in a fiarly complicated manner. To overcome these difficulties, most of the past research results assumed that multiple queues become decoupled as the switch size grows unboundely large, which enables the conventional queueing theory to be applied. In this apepr, w analyze a non-blocking space-division ATM swtich with input queueing, and prove analytically the pheonomenon that virtual queues formed by the head-of-line cells become decoupled as the switch size grows unboundedly large. We also establish various properties of the limiting queue size processes so obtained and compute the maximum throughput associated with ATM switches with input queueing.

  • PDF

Theoretical Studies on the Gas-Phase Pyrolysis of Carbonate Esters, Hydroxy-Esters and -Ketones

  • Lee, Ik-Choon;Cha, Ok-Ja;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.97-101
    • /
    • 1991
  • Gas-phase pyrolyses of carbonate esters, ${\alpha}$- and ${\beta}$-hydroxy esters and ${\beta}$-hydroxy ketones have been studied theoretically by the AM1 MO method. Carbonate esters were found to decompose by two types of processes; in the reaction pathway involving an intermediate, the decomposition of the intermediate was rate-limiting, but direct pyrolyses were also possible via a six-membered cyclic transition state in which the methoxy oxygen attacks a hydrogen atom on the ${\beta}$-carbon. The hydroxy esters and ketones were found to decompose in a concerted process involving a six-membered cyclic transition state. Successive methylation on the ${\alpha}$- and ${\gamma}$-carbon led to an increase in the reactivity in agreement with experiments.

Pretreatment of Waste-activated Sludge for Enhancement of Methane Production (메탄발효 효율향상을 위한 하.폐수 슬러지의 전처리 기술)

  • NamKung, Kyu-Cheol;Jeon, Che-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • Although different disposal routes of waste-activated sludge are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into methane. The potential of using methane as energy source has long been widely recognised and the present paper extensively reviews the principles of anaerobic digestion, the process parameters and hydrolysis. Hydrolysis is recognised as rate-limiting step in the complex digestion process. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilizing intracellular material into the water phase and transforming refractory organic material into biodegradable species. The reader will finally be guided to extensive discussion for anaerobic digestion processes.

Bistatic reverberation simulation using intersection of scattering cross section between sound source and receiver (음원과 수신기 사이에 교차 산란단면적을 이용한 양상태 잔향음 모의)

  • Oh, Raegeun;Kim, Sunhyo;Son, Su-Uk;Choi, Jee Woong;Park, Joung-Soo;Shin, Changhong;Ahn, Myonghwan;Lee, Bum Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • It is important to predict accurately reverberation level, which is a limiting factor in underwater target detection. Recently, the studies have been expanded from monostatic sonar to bistatic sonar in which source and receivers are separated. To simulate the bistatic reverberation level, the computation processes for propagation, scattering strength, and scattering cross section are different from those in monostatic case and more complex computation processes are required. Although there have been many researches for bistatic reverberation, few studies have assessed the bistatic scattering cross section which is a key factor in simulate reverberation level. In this paper, a new method to estimate the bistatic scattering cross section is suggested, which uses the area of intersection between two circles. Finally, the reverberation levels simulated with the scattering cross section estimated using the method suggested in this paper are compared with those estimated using the methods previously suggested and those measured from an acoustic measurements conducted in May 2013.

Photofragment Translational Spectroscopy of CH₂I₂ at 304 nm: Polarization Dependence and Energy Partitioning

  • 정광우;Temer S. Ahmadi;Mostafa A. El-Sayed
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1274-1280
    • /
    • 1997
  • The photodissociation dynamics of CH2I2 has been studied at 304 nm by state-selective photofragment translational spectroscopy. Velocity distributions, anisotropy parameters, and relative quantum yields are obtained for the ground I(2P3/2) and spin-orbit excited state I*(2P1/2) iodine atoms, which are produced from photodissociation of CH2I2 at this wavelength. These processes are found to occur via B1 ← A1 type electronic transitions. The quantum yield of I*(2P1/2) is determined to be 0.25, indicating that the formation of ground state iodine is clearly the favored dissociation channel in the 304 nm wavelength region. From the angular distribution of dissociation products, the anisotropy parameters are determined to be β(I)=0.4 for the I(2P3/2) and β(I*)=0.55 for the I*(2P1/2) which substantially differ from the limiting value of 1.13. The positive values of anisotropy parameter, however, show that the primary processes for I and I* formation channels proceed dominantly via a transition which is parallel to I-I axis. The above results are interpreted in terms of dual path formation of iodine atoms from two different excited states, i.e., a direct and an indirect dissociation via curve crossing between these states. The translational energy distributions of recoil fragments reveal that a large fraction of the available energy goes into the internal excitation of the CH2I photofragment; < Eint > /Eavl=0.80 and 0.82 for the I and I* formation channels, respectively. The quantitative analysis for the energy partitioning of available energy into the photofragments is used to compare the experimental results with the prediction of direct impulsive model for photodissociation dynamics.

Analysis of Microcystis Bloom in Daecheong Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청호 Microcystis Bloom 해석)

  • Chung, Se Woong;Lee, Heung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.73-87
    • /
    • 2011
  • An abnormal mono-specific bloom of the cyanobacterium Microcystis aeruginosa had developed at a specific location (transitional zone, monitoring station of Hoenam) in Daecheong Reservoir from middle of July to early August, 2001. The maximum cell counts during the peak bloom reached 1,477,500 cells/mL, which was more than 6~10 times greater than those at other monitoring sites. The hypothesis of this study is that the timing and location of the algal bloom was highly correlated with the local environmental niche that was controled by physical processes such as hydrodynamic mixing and pollutant transport in the reservoir. A three-dimensional, coupled hydrodynamic and ecological model, ELCOM-CAEDYM, was applied to the period of development and subsequent decline of the bloom. The model was calibrated against observed water temperature profiles and water quality variables for different locations, and applied to reproduce the algal bloom event and justify the limiting factor that controled the Microcystis bloom at R3. The simulation results supported the hypothesis that the phosphorus loading induced from a contaminated tributary during several runoff events are closely related to the rapid growth of Microcystis during the period of bloom. Also the physical environments of the reservoir such as a strong thermal stratification and weak wind velocity conditions provided competitive advantage to Microcystis given its light adaptation capability. The results show how the ELCOM-CAEDYM captures the complex interactions between the hydrodynamic and biogeochemical processes, and the local environmental niche that is preferable for cyanobacterial species growth.

Thermal Atomic Layer Etching of the Thin Films: A Review (열 원자층 식각법을 이용한 박막 재료 식각 연구)

  • Hyeonhui Jo;Seo Hyun Lee;Eun Seo Youn;Ji Eun Seo;Jin Woo Lee;Dong Hoon Han;Seo Ah Nam;Jeong Hwan Han
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2023
  • Atomic layer etching (ALE) is a promising technique with atomic-level thickness controllability and high selectivity based on self-limiting surface reactions. ALE is performed by sequential exposure of the film surface to reactants, which results in surface modification and release of volatile species. Among the various ALE methods, thermal ALE involves a thermally activated reaction by employing gas species to release the modified surface without using energetic species, such as accelerated ions and neutral beams. In this study, the basic principle and surface reaction mechanisms of thermal ALE?processes, including "fluorination-ligand exchange reaction", "conversion-etch reaction", "conversion-fluorination reaction", "oxidation-fluorination reaction", "oxidation-ligand exchange reaction", and "oxidation-conversion-fluorination reaction" are described. In addition, the reported thermal ALE processes for the removal of various oxides, metals, and nitrides are presented.