• Title/Summary/Keyword: limiters

Search Result 182, Processing Time 0.029 seconds

Electromagnetic characteristics of superconducting fault current limiters under the quenching (박막형 초전도 한류기의 퀜치상태의 전자기 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, K.G.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.415-417
    • /
    • 2003
  • we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type-SFCL and the maximum current density was 14.61 $A/m^2$ and also the maximum Joule heat was 2,030 $W/m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

  • PDF

A Study on SVL Transient Characteristics by Switching Overvoltage at Single Point Bonding Section in Underground Transmission Cables (개폐과전압 발생시 지중송전선로 편단접지 구간에서 SVL에 미치는 과도특성에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.764-769
    • /
    • 2014
  • This paper describes sheath voltage limiter(SVL) transient characteristics by switching overvoltage considering single point bonding in underground transmission cables. The crossbonding system is generally used for grounding methods of underground transmission system. However, the single point bonding system is used in selective area which is difficult to consist of crossbonding major section. The sheath voltage limiters are connected between joints in the single point bonding. Specially, the high overvoltage might be generated in that section as well as the aging of sheath voltage limiter might be progressed by various electrical stress including lightning overvoltage, switching overvoltage and power frequency overvoltage. Therefore, in this paper, the switching overvoltage characteristics in underground cables are firstly analysed using EMTP simulation. Then, the switching overvoltage of sheath voltage limiter is also studied in single point bonding. Finally, the reduction method of sheath voltage limiter switching overvoltage is proposed by various simulation studies including circuit breaker operating order.

Quench Characteristics of Resistive SFCL Elements in series (직렬 연결된 초전도 한류기의 퀜치 및 한류 특성)

  • Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Lim, Hae-Ryong;Kim, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.663-665
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters (SFCL) based on YBCO thin films grown on 2-inch diameter saphire substrates Two SFCLs with nearly identical properties were connected in series to investigate the simultaneous quench. There was a slight difference in the rate of voltage increase between two SFCL units when they were operated independently. This difference. however, resulted in significantly unbalanced power dissipation between the units. This imbalance was removed by connecting a shunt resistor to an SFCL in parallel. The appropriate values of the shunt resistances were $80{\Omega}$ at $75 V_{rms}$. $100{\Omega}$ at $100 V_{rms}$ and $110{\Omega}$ at $120 V_{rms}$, respectively. Increased power input at high voltages also reduced the initial imbalance in power dissipation. but with increase in film temperature to higher than 200 K.

  • PDF

Enhancement of Power Rating for the Resistive Fault Current Limiter (병렬우선 직렬연결된 YBCO박막형 초전도 한류기의 용량증대)

  • Park K.B.;LEE B.W.;Kang J.S.;Oh I.S.;hyun O.B.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.806-808
    • /
    • 2004
  • The series and parallel connection is essential for increasing power ratings of resistive type for fault current limiters. To increase voltage class, components are connected in series and to increase current level to the nominal value, they are connected in parallel. There are two ways to connect components in series and parallel. First, connected in series and then the module connects to the parallel. Second, connected in parallel and the module connects to the series. We have studied for the two ways. In this paper, we particularly investigated way to connect components in parallel first This way has the advantage of inducing effective simultaneous quench without any other devices, for example, the thing which is inducing magnetic field to the limiting and shunt resistors. And also we studied for the endurance of component which is patterned to the bi-spiral for prospective fault current. It is very important to understand this, because SFCL will use as the only device to decrease burden of circuit breaker. As experimental results, limiting component patterned to bi-spiral endures fault current up to 30kA and it works well, in parallel to series connection,

  • PDF

INJURY PERFORMANCE EVALUATION OF THE CHILD RESTRAINT SYSTEMS

  • Shin, Y.J.;Kim, H.;Kim, S.B.;Kim, H.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 2007
  • The new FMVSS 208, 213, 225 regulations include automatic suppression of airbags to prevent low-risk airbag deployment and the use of child seats with a rigid-bar anchor system. The regulations mean that children must sit in the rear seat, but do not include other specific safety measures for their protection. In the rear, restraint equipment consists of three-point shoulder/lap belts for the outside seats and a static two-point lap belt in the middle, with no additional devices such as pretensioners or load limiters; this is far from optimal for children. This study investigated injury rates using a 3-year-old-child dummy. ECE R44 sled tests used a booster, a speed of 48 km/h, and a 26- to 32-g rectangular deceleration pulse. While seated on a booster, the dummies were restrained by an adult shoulder/lap three-point belt. HIC_15 msec, Chest G and Nij were somewhat lower with an emergency locking retractor (ELR)+pretensioner+load limiter than with only an ELR or with ELR+pretensioner. However, the current seat-belt system results in injury rates that exceed the limit for OOP performance under the new FMVSS 208 regulations.

Supersonic Base Flow by Using High Order Schemes

  • Shin, Edward Jae-Ryul;Won, Su-Hee;Cho, Doek-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.723-728
    • /
    • 2008
  • We performed numerical analysis of base drag phenomenon, when a projectile with backward step flies into atmosphere at supersonic speed. We compared with other researchers. From our previous studies that were 2-dimensional simulation, we found out from sophisticated simulations that need dense mesh points to compare base pressure and velocity profile after from base with experimental data. Therefore, we focus on high order spatial disceretization over 3rd order with TVD such as MUSCL TVD 3rd, 5th, and WENO 5th order, and Limiters such as minmod, Triad. Moreover, we enforce to flux averaging schemes such as Roe, RoeM, HLLE, AUSMDV. In present, one dimensional result of Euler tests, there are Sod, Lax, Shu-Osher and interacting blast wave problems. AUSMDV as a flux averaging scheme with MUSCL TVD 5th order as spatial resolution is good agreement with exact solutions than other combinations. We are carrying out the same approaches into 3-dimensional base flow only candidate flux schemes that are Roe, AUSMDV. Additionally, turbulence models are used in 3-dimensional flow, one is Menter s SST DES model and another is Sparlat-Allmaras DES/DDES model in Navier-Stokes equations.

  • PDF

Sensitivity of SNF transport cask response to uncertainty in properties of wood inside the impact limiter under drop accident conditions

  • Lee, Eun-ho;Ra, ChiWoong;Roh, Hyungyu;Lee, Sang-Jeong;Park, No-Choel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3766-3777
    • /
    • 2022
  • It is essential to ensure the safety of spent nuclear fuel (SNF) transport cask in drop situation that is included in transport accident scenarios. The safety of the drop situation is affected by the impact absorption performance of impact limiters. Therefore, when designing an impact limiter, the uncertainty in the material properties that affect the impact absorption performance must be considered. In this study, the material properties of the wood inside the impact limiter were selected as the variables for a parametric study. The sensitivity analysis of the drop response of the SNF transport cask with impact limiter was performed. The minimum wood strength required to prevent a direct collision between the cask and floor was derived from the analysis results. In addition, the plastic strain response was analyzed and strain-based evaluation was performed. Based on this result, the critical values of wood properties that change the impact dynamic characteristics were investigated. Finally, the optimal material properties of wood were obtained to secure the structural safety of the SNF transport cask. The results of this study can contribute to the development of SNF transport cask, thereby ensuring safety in transport accident conditions.

Fabrication and fault test of 12 kVA class BSCCO SFCL element (12 kVA급 BSCCO 한류소자 제작 및 특성 실험)

  • Oh, S.Y.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Jang, G.E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • For the development of superconducting fault current limiters(SFCLs) having large current capacity, we fabricated an SFCL element that consists of Bi-2212 superconductor and Cu-Ni alloy tubes. First, Ag was plated on the surface of the Bi-2212 for the enhancement of soldering process. On the Ag-plated Bi-2212 tube, a Cu-Ni alloy tube was soldered using optimized solders and soldering conditions. The BSCCO/Cu-Ni composite was processed mechanically to have a helical shape for the improvement of the SFCL characteristics. The total current path of the SFCL element was 1330 mm long with 12 turns, and had critical current of 340 A at 77 K. Finally, we carried out the fault test using the fabricated SFCL element. It showed successful current limiting performance under the fault condition of 50 $V_{rms}$ and 5.5 kA. From the results, the rated voltage of the SFCL element was decided to be 0.4 V/cm, and the power capacity was 12 kVA at 77 K. The fabrication process of the SFCL and the fault test results will be presented.

Experimental Analysis of Superconducting Fault Current Limiter Wound with Two Different HTS wires in Parallel

  • Kim, Ji-Tae;Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Kim, Young-Jae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.30-33
    • /
    • 2008
  • Several kinds of superconducting fault current limiters (SFCLs), which reduces huge fault current, have been developing by many research groups. The SFCL has no impedance during normal operation, so it dose not give any influence to electric power system. The resistive type SFCL reduces the fault current with the impedance generated in the superconducting part of the SFCL when the fault current exceeds the critical current of SFCL. In this paper, a new type resistive SFCL made of bifilar coil wound with two different high-Tc superconducting (HTS) wires in parallel. Although a bifilar coil has theoretically no inductance, the bifilar coil made in this paper could generate inductance at fault. The specifications of the used two wires were considerably different, thus current distribution between the two HTS wire was different at fault. When the fault current exceeded the critical current of one wire in the bifilar coil, the momentary sharp increase of impedance was detected. Base on the results, a new resistive type SFCL can generate not only resistance but also inductance, which can be used to control a fault current in the future.

Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen (과냉 액체질소 내에서 순간적 열확산 실험)

  • Choi, J.H.;Ha, J.C.;Byun, J.J.;Chang, H.M.;Kim, H.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.