• Title/Summary/Keyword: limit state model

Search Result 342, Processing Time 0.028 seconds

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 불안정성 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.857-864
    • /
    • 2012
  • A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

A Study on Electric Circuit Modeling and Analysis for AC Railway System (전기철도 교류급전 시스템의 회로 모델링 및 해석기법 연구)

  • 창상훈;김주락;홍재승;오광해;김정훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.219-228
    • /
    • 2000
  • This paper presents an advanced approach to simulate AC electric railway system in steady-state. The algorithm consists of two parts. One is circuit modeling of elements of electric railway system, the other is an analysis on electric circuit. The modeling procedure has two steps, in the first step, proposed is the modeling method which is considered to be an internal impedance of the autotransformers and mutual impedances between the feeding systems. For the load(locomotives) modeling which is the second step, improved results are obtained as application to the proposed constant power model compared with constant impedance model. In the analysis on electric circuit, a generalized analysis method using the loop equation has been proposed and there is no limit in the number of trains between the ATs. In addition, the computer simulation by the proposed model was practiced. Simulation result seems very reasonable. It is therefore concluded that techniques for the electric circuit modeling and analysis have been established. Accuracy of the techniques will be further investigated.

  • PDF

The Safety Analysis under failure of the 1st and 2ne Suspension Elements of the Next Generation High-speed Train model (차세대 고속철도 차량 모델의 1.2차 현가요소의 고장 발생 시 안전성 해석)

  • Kim, Ji-Young;Park, Tae-Won;Yoon, Ji-Won;Cho, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.984-988
    • /
    • 2010
  • In Korea, the next generation high-speed train, whose target is maximum speed of 400km/h and operating speed of 370km/h, has been developed since 2007. In this paper, the safety of the next generation high-speed train is compared UIC 518OR under the malfunctioning situation of the suspension system. The bogie of the next generation high-speed train has two suspensions. Two different vehicle models of the next generation high-speed train are created by using VAMPIRE and ADAMS/Rail, which are specialized to design railway vehicle. And Those models are showed same dynamic properties. First of all, the sensitivity analysis of ModelCenter is performed using model of VAMPIRE. One suspension element which has significant effects on the safety are selected by result of the sensitivity analysis. And then, the dynamic analysis when the suspension element is broken is performed using ADAMS/Rail. The 30km track between Pungsegyo and Biryong tunnel in Gyeongbu High-speed Line was used at the dynamic analysis. The estimated value is found by using the normal method of UIC 518OR. The estimated values on the normal/fault state and the limit values of UIC 518OR are compared. Finally, the safety of the next generation high-speed train is verified.

  • PDF

Corrosion-Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식.피로신뢰성 기반 생애주기비용 분석)

  • Jeon, Hong-Min;Sun, Jong-Wan;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1132-1140
    • /
    • 2007
  • As it recently appears that Life Cycle Cost Analysis may be considered as new methodology for economic valuation of infrastructure many researches have been made to assess LCC(Life Cycle Cost) of each facility based on a reasonable methods. In general, LCC is composed of construction cost and expected maintenance repair cost. And especially, maintenance repair cost must be estimated to enhance the reliability through systematic and reasonable methods. However in Korea, because high speed railway steel bridges are recently constructed no direct statistical data are available for the account of the maintenance cost and then their maintenance characteristics are not linear yet. Therefore, the approach proposed in the paper utilizes a theoretical determination and degradation of the corrosion and fatigue of the bridges based on Rahgozar et al.(2006)'s model on fatigue notch factor considering into the corrosion to incorporate the corrosion effect into the fatigue strength reduction model. And then, the corresponding probability of failure is calculated in terms of the reliability index using S-N curve to formulate the fatigue limit state. Therefore, this paper proposes the minimum Life Cycle Cost through optimum maintenance plan analysis of high-speed railway steel bridges under construction. Finally, this paper reviews the proposed model in oder to confirm the applicability and feasibility by appling it to high speed railway steel bridges under construction

  • PDF

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen;Linyun Zhou
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.217-230
    • /
    • 2023
  • Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

Sampling Strategies for Computer Experiments: Design and Analysis

  • Lin, Dennis K.J.;Simpson, Timothy W.;Chen, Wei
    • International Journal of Reliability and Applications
    • /
    • v.2 no.3
    • /
    • pp.209-240
    • /
    • 2001
  • Computer-based simulation and analysis is used extensively in engineering for a variety of tasks. Despite the steady and continuing growth of computing power and speed, the computational cost of complex high-fidelity engineering analyses and simulations limit their use in important areas like design optimization and reliability analysis. Statistical approximation techniques such as design of experiments and response surface methodology are becoming widely used in engineering to minimize the computational expense of running such computer analyses and circumvent many of these limitations. In this paper, we compare and contrast five experimental design types and four approximation model types in terms of their capability to generate accurate approximations for two engineering applications with typical engineering behaviors and a wide range of nonlinearity. The first example involves the analysis of a two-member frame that has three input variables and three responses of interest. The second example simulates the roll-over potential of a semi-tractor-trailer for different combinations of input variables and braking and steering levels. Detailed error analysis reveals that uniform designs provide good sampling for generating accurate approximations using different sample sizes while kriging models provide accurate approximations that are robust for use with a variety of experimental designs and sample sizes.

  • PDF