• 제목/요약/키워드: limit state function

검색결과 218건 처리시간 0.023초

추계론적 유한요소해석에서의 확률밀도함수 사용과 수렴치 (Application of Probability Density Function in SFEM and Corresponding Limit Value)

  • 노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.857-864
    • /
    • 2006
  • Due to the difficulties in numerical generation of random fields that satisfy not only the probabilistic distribution but the spectral characteristics as well. it is relatively hard to find an exact response variability of a structural response with a specific random field which has its features in the spatial and spectral domains. In this study. focusing on the fact that the random field assumes a constant over the domain under consideration when the correlation distance tends to infinity, a semi-theoretical solution of response variability is proposed for in-plane and plate bending structures. In this procedure, the probability density function is used directly resulting in a semi-exact solution for the random field in the state of random variable. It is particularly noteworthy that the proposed methodology provides response variability for virtually any type of probability density functions.

  • PDF

FORM 및 SORM을 이용한 무어링 체인의 신뢰성 기반 결함평가 (Reliability-based Flaw Assessment of a Mooring Chain Using FORM and SORM)

  • 이충현;김유일
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.430-438
    • /
    • 2017
  • This study presents the reliability-based flaw assessment for the crack in the mooring chain of a floating type offshore structure. BSI(British Standard Institution) flaw assessment procedure BS7910 was combined with first- and second-order reliability method (FORM, SORM) so that the acceptance of a given flaw can be assessed considering the uncertainties of parameters that play important role in the flaw assessment. Considering the probabilistic nature of the crack size and long-term distribution of the stresses acting on the crack in mooring chain, the failure probability was calculated using FORM and SORM. To check the validity of the FORM and SORM, Monte Carlo simulation was also carried out to derive the true limit state function and compared with the results of FORM and SORM.

응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석 (Reliability Analysis of Pile Type Quaywall Using Response Surface Method)

  • 이상근;김동현
    • 한국해안·해양공학회논문집
    • /
    • 제23권6호
    • /
    • pp.407-413
    • /
    • 2011
  • 응답면 기법을 사용하여 잔교식 안벽의 신뢰성 해석을 수행하였다. 잔교식 안벽은 중력식 안벽과 달리 상부가 강관파일에 의해 지지되는 유연구조물로 한계상태함수가 음함수로 존재한다. 따라서, 한계상태함수를 양함수로 근사하기 위해 응답면 기법을 사용하였다. 응답면 기법을 이용한 LevelII신뢰성해석 방법을 통해 지진하중에 의한 잔교식 안벽의 신뢰도지수를 계산하고, 중요도 추출법을 통해 검증하였다. 수치해석으로는 직항식, 사항식을 각각 해석하였다.

격납건물의 내진안전성 평가 (Seismic Safety Assessment of Containment Building)

  • 이성로;배용귀
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.225-233
    • /
    • 2004
  • 본 연구에서는 응답면기법을 이용하여 격납건물의 내진안전성 평가를 하였다. ABAQUS를 이용하여 하중, 저항과 해석에서의 랜덤변수를 고려한 구조해석을 수행하였고 이로부터 변수의 다항식으로 표현되는 구조물의 응답을 얻었다. 그리고 Level II에 의해 신뢰성해석을 하였다. 한계상태함수로는 콘크리트의 2축응력 상태를 고려하기 위해 Drucker-Prager 파괴기준을 이용하였다. 구조물의 수명, 지진의 연발생율과 조건부 파괴확률을 고려하여 격납건물의 파괴확률을 계산하였다. 또한 응답면기법의 안정적인 결과를 얻기 위해 표본점 선정에 대한 민감도해석을 수행하였다.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

Reliability analysis of latticed steel towers against wind induced displacement

  • Khan, M.A.;Siddiqui, N.A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.9-21
    • /
    • 2004
  • The present study aims at the reliability analysis of steel towers against the limit state of deflection. For this purpose tip deflection of the tower has been obtained after carrying out the dynamic analysis of the tower using modal method. This tip deflection is employed for subsequent reliability analysis. A limit state function based on serviceability criterion of deflection is derived in terms of random variables. A complete procedure of reliability computation is then presented. To study the influence of various random variables on tower reliability, sensitivity analysis has been carried out. Design points, important for probabilistic design of towers, are also located on the failure surface. Some parametric studies have also been included to obtain the results of academic and field interest.

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

비선형 전기유도 시스템용제어기 특성 (Design of a Controller for Nonlinear Electrohydraulic Position Control Systems)

  • 서원모;진강규;하주식
    • 대한전기학회논문지
    • /
    • 제41권1호
    • /
    • pp.63-72
    • /
    • 1992
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control system is designed and implemented. The method is based on augmenting the system with integrators, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then reajusting the feedback gains using the deseribing funtion method to eliminate the limit cycle in the steady state. The proposed control law is implemented using OP amplifiers, and step and ramp response tests are carried out in the electrohydraulic servomechanism. The results show the improvement in both rransient and steady-state response.

  • PDF

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.