• Title/Summary/Keyword: limit soil depth

Search Result 73, Processing Time 0.026 seconds

The Properties of Pusan Clay : Soil and Mineralogy of Clay Sediments in Noksan Area, Nakdong River Estuary (부산점토의 특성 : 녹산지역 점토 퇴적물의 광물조성과 토질)

  • 이선갑;김성욱;황진연;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.741-746
    • /
    • 2003
  • The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.

  • PDF

Reliability of underground concrete barriers against normal missile impact

  • Siddiqui, N.A.;Khan, F.H.;Umar, A.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.79-93
    • /
    • 2009
  • In the present paper, a methodology has been presented for the reliability assessment of concrete barriers that lie at a certain depth in the soil, and a missile (a rigid projectile) impacts the top of the soil cover normally, and subsequently after penetrating the soil cover completely it hits the barrier with certain striking velocity. For this purpose, using expressions available in the literature, striking velocity of missile at any depth of soil has been derived and then expressions for the depths of penetration in crater and tunnel region of concrete barrier have been deduced. These depths of penetration have been employed for the derivation of limit state functions. Using the derived limit state functions reliability assessment of underground concrete barrier has then been carried out through First Order Reliability Method (FORM). To study the influence of various random variables on barrier reliability, sensitivity analysis has also been carried out. In addition, a number of parametric studies is conducted to obtain the results of practical interest.

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Experimental Study on the Harrow Water Reguirement and the Factors Influenced on It in the Paddy Field (써레질 용수량과 지배요인에 관한 시험연구)

  • 권영현;윤정목;김철기;한찬택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.90-95
    • /
    • 1989
  • The purpose of this study is to seek out the harrow water requirement applicable for the irrigation plan of paddy field and to find out the factors influenced on a variation in the requirement. The plots of experiment were arranged with randomized block design which was compo- sed of three kinds of soil texture (sandy loam, loam and silty loam) and ploughing depth (12cm, 17cm, and 22cm). The results obtained from this experimental study are summarized as follows. 1. Harrow water reguirement is not only changed by soil texture, but influenced by soil water content just before irrigating 2. Magnitude of total harrow water reguirement appli(able for the irrigation plan, when surface water depth and the water content just before irrigating is fixed on the basis of 30 mm and a shrinkage limit respectively, generally becomes to be 177.5mm, 116.3mm and 113. 8mm in the sandy loam, loam amd silty loam block, respectively. 3. The more a percolation of soil layer occurs, the more the harrow water requirement increases, but it is not much influenced by the increase in ploughing depth. 4. The larger a porosity of soil layer is, the more a net harrow requirement increases 5. The factors that influence on a variation in the harrow water requirement are appea- red to be percolation of soil layer, soil water content just before irrigating, porosity of soil layer, ploughing depth and designed surface water depth etc.

  • PDF

Response Spectrum Analysis-Induced Limit Acceleration of Soil Pile Systems (지반-기초말뚝 상호작용을 고려한 응답스팩트럼의 적용 한계가속도)

  • Shin, Jong-young;Song, Su-min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.7-22
    • /
    • 2023
  • In this study, the limit range of input acceleration was investigated based on time domain and response spectrum analyses by considering the relative density, groundwater depth, and soil type. Special attention was paid to the input acceleration and shear modulus of soil, which affect pile behavior. The surrounding soil was identified as an elastoplastic material and subjected to FLAC3D analysis using the Mohr-Coulomb and Finn models as well as FB-Multiplier analysis using a nonlinear p-y curve for soil spring. Based on the analyses, the limit range of acceleration on the pile is much higher for SP soil than for SM soil, and the groundwater level tends to reduce the limit range of input acceleration, irrespective of soil conditions. The limit range of acceleration was mainly affected by the shear modulus. The limit range of acceleration with nonlinear soil behavior is proportional to the relative density of the surrounding soil.

The effective depth of soil stratum for plates resting on elastic foundation

  • Daloglu, Ayse T.;Ozgan, K.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.263-276
    • /
    • 2004
  • The purpose of this paper is to determine the subsoil depth affected from the load on the plate resting on elastic foundation using stress distribution within the subsoil that will be occurred depending on the loading and dimension of the plate. An iterative method is developed in order to determine the effective depth of the subsoil under the plate. Numerical examples from the technical literature are solved by means of the method suggested herein and displacements, bending moments and shear forces are presented in graphical and tabular forms to evaluate the effects of the limit depth considered in the study. Results showed the efficiency and simplicity of the present approach for the plate resting on an elastic foundation.

Prediction of the Shear Strength of Oil Contaminated Clay using Fall Cone (폴콘을 이용한 유류 오염 점토지반의 전단강도 예측)

  • Song, Young-Woo;Lee, Han-Sok;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.107-113
    • /
    • 2010
  • This paper presents the prediction of shear strength of oil contaminated clay using fall cone test used to determine the liquid limit of soil. The penetration depth of fall cone is related to water content of soil. Laboratory vane shear can also be related to water content. To explore the relative correlation between penetration depth of fall cone and laboratory vane shear, both fall cone tests and laboratory vane shear test were carried out with water contents of soil. The developed empirical relationships in this studys showed that the shear strength is reduced to 3.9% with 1% increase of oil content. And, the lesser initial water content of contaminated clay, the more shear strength of contaminated clay is affected by oil content.

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

A Study on the Analysis of Freezing Soil by Frost Groups and Frost Depth in Korea (우리나라 동결토의 토군별 분석과 동결심도에 관한 연구)

  • 정철호
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.5-16
    • /
    • 1989
  • This paper statistically analyses the freezing soil by frost group and frost depth in Korea with data from soil testing in the Korea National Housing Corporation, the climate data provided by the Central Weather Office and the data on the frost depth from the National Construction Laboratory Institute. In this paper, freezing variable are analysed such as percentage finer than 0.02 m by weight, plasticity index, freezing index, water contents of soil and frost depth etc‥‥ The result of the analysis is as follows. 1) The frost depth of Korea depends on the properties of soil rather thank the characte fistic of area. 2) The distribution map of design freezing index in 57 cities is drawn up with the maxi- mum freezing index, during past 14 years, calculated by the average of the air temperature observed four times(03 : 00.09 00, 15 : 00, 21 : 00) a day. 3) By correcting the OLS line estimated from the relationship between freezing index and frost depth, a method of utlizing the line with the upper confidence limit of 99.9% int-distribution as predicted maximum frost depth is newly introduced.

  • PDF