• Title/Summary/Keyword: limit of stability

Search Result 1,071, Processing Time 0.027 seconds

Effects of HTS cable Applied to the Voltage Stability Limited Power System (전압안정도 제약계통에 대한 고온초전도 케이블 적용효과)

  • Lee, Geun-Joon;Hwang, Si-Dol;Lee, So-Young;Byun, Chan-Geun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.447-450
    • /
    • 2004
  • This paper presents the basic application idea of superconductor cable for voltage stability limited power system. In bulk power system, the transfer capability of transmission line is often limited by the voltage stability, and superconductor cable could be on of the countermeasure to enhance heat transfer limit as well as voltage stability limit. Steady state voltage stability approach by P-V curve is used to calculate the maximum transfer capability of initial system and superconductor applied system IEEE-14 bus system is used to demonstrate its applicability.

  • PDF

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

Enhancement of Interface Flow Limit using Static Synchronous Series Compensator(SSSC) (SSSC 투입에 따른 연계선로의 송전운용한계 개선)

  • Kim, Seul-Ki;Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk;Chang, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.28-30
    • /
    • 2000
  • This paper introduces a power flow model of SSSC for voltage stability study. The SSSC model is obtained from the injection model of voltage source inverter by adding the condition that SSSC injection voltage is in quadrature with current of SSSC-installed branch. This model is incorporated into modified CPF algorithm to study effects of SSSC on the security-constrained interface flow limit. Determination of interface flow limit is simply briefed. In case study a 771-bus real system is used to show that SSSC can improve interface flow limit in terms of voltage stability.

  • PDF

Identification of Linear and Nonlinear Dynamic Stability Characteristics of a Medium-size High-speed Turbocharger Rotor Supported by 3-lobe Bearings (3-로브 베어링으로 지지된 중형 고속 터보차저 로터의 선형 및 비선형 동적 안정성 특성 규명)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.562-569
    • /
    • 2011
  • In this study linear and nonlinear dynamic stability characteristics of a medium-size high-speed turbocharger, whose rotor is supported by two 3-lobe journal bearings, are analyzed to evaluate and identify the effects of its bearing design variables. The rotor has the rated speed of 40,500 rpm and maximum continuous speed of 45,000 rpm. At first, utilizing the linear stability analysis method, bearing designs of yielding stable or unstable LogDecs as small as possible are searched by manipulating with machined bearing clearances and preloads. As next, utilizing the nonlinear analysis method, limit cycles of the rotor responses at the rated and maximum continuous speeds are simulated to check their acceptances. Results have shown that for the turbocharger rotor-bearing system considered, the 3-lobe journal bearing design with a smaller machined clearance and a larger preload are preferred for the stable rotor responses. More importantly, since there exists a good correlation between the linear and nonlinear stability analysis results, it is concluded that firstly the linear stability analysis method may be applied to screen quickly the ranges of bearing designs for stable or least unstable solutions and then, lastly the nonlinear stability analysis method may be deployed to check an absolute motion stability in terms of the limit cycle.

Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance (충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석)

  • Kim, S.P.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

Limit analysis of seismic collapse for shallow tunnel in inhomogeneous ground

  • Guo, Zihong;Liu, Xinrong;Zhu, Zhanyuan
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.491-503
    • /
    • 2021
  • Shallow tunnels are vulnerable to earthquakes, and shallow ground is usually inhomogeneous. Based on the limit equilibrium method and variational principle, a solution for the seismic collapse mechanism of shallow tunnel in inhomogeneous ground is presented. And the finite difference method is employed to compare with the analytical solution. It shows that the analytical results are conservative when the horizontal and vertical stresses equal the static earth pressure and zero at vault section, respectively. The safety factor of shallow tunnel changes greatly during an earthquake. Hence, the cyclic loading characteristics should be considered to evaluate tunnel stability. And the curve sliding surface agrees with the numerical simulation and previous studies. To save time and ensure accuracy, the curve sliding surface with 2 undetermined constants is a good choice to analyze shallow tunnel stability. Parameter analysis demonstrates that the horizontal semiaxis, acceleration, ground cohesion and homogeneity affect tunnel stability greatly, and the horizontal semiaxis, vertical semiaxis, tunnel depth and ground homogeneity have obvious influence on tunnel sliding surface. It concludes that the most applicable approaches to enhance tunnel stability are reducing the horizontal semiaxis, strengthening cohesion and setting the tunnel into good ground.

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Effects of Using a Mobile Phone on Postural Control (휴대전화 이용이 자세조절에 미치는 영향)

  • Won, Jong-Im
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.61-71
    • /
    • 2012
  • In daily activities, people often perform two or more tasks simultaneously. This is referred to as dual-tasking or multi-tasking. The purpose of this study was to examine the effects of performing dual tasks while using a mobile phone on static and dynamic postural stability. Twenty-four subjects were asked to stand on a force plate and then instructed to perform a balance task only (BT), a balance task while listening to music (BTL), a balance task while talking on the mobile phone (BTT), and a balance task while sending text messages (BTS). We used the BioRescue$^{(R)}$ to measure postural sway and limit of stability for static and dynamic postural stability. Also the star excursion balance test (SEBT) was used to measure dynamic postural stability. A one-way ANOVA with repeated measures was used to compare the effects of the BT, BTL, BTT, and BTS. The Bonferroni's post hoc test was used to determine the differences among four tasks. Carrying out the BTS significantly decreased the limit of stability compared with carrying out the BT, BTL, and BTT (p<.05). In limit of stability, total surface area of BTT was more significantly decreased than that of BT and total surface area of BTS was more decreased than that of BT, BTL and BTT (p<.05). In the SEBT, the BTS displayed significantly smaller reach distance values compared with the BT or BTL (p<.05). These findings suggest that performing the balance task while sending text message on the mobile phone decreases dynamic postural stability, whereas performing the same task while listening to music using the mobile phone does not. Therefore, it requires more attention to maintain dynamic balance while sending text messages.