• Title/Summary/Keyword: limit analysis method

Search Result 2,337, Processing Time 0.035 seconds

Discretization technique for stability analysis of complex slopes

  • Hou, Chaoqun;Zhang, Tingting;Sun, Zhibin;Dias, Daniel;Li, Jianfei
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • In practice, the natural slopes are frequently with soils of spatial properties and irregular features. The traditional limit analysis method meets an inherent difficulty to deal with the stability problem for such slopes due to the normal condition in the associated flow rule. To overcome the problem, a novel technique based on the upper bound limit analysis, which is called the discretization technique, is employed for the stability evaluation of complex slopes. In this paper, the discretization mechanism for complex slopes was presented, and the safety factors of several examples were calculated. The good agreement between the discretization-based and previous results shows the accuracy of the proposed mechanism, proving that it can be an alternative and reliable approach for complex slope stability analysis.

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

A Study on Determination of Bearing Capacity of Eccentrically Loaded Strip Footing (편심하중을 받는 줄기초의 지지력 산정에 관한 연구)

  • Kwon, Oh Kyun;Chung, Choong-Ki;Kim, Tae Soo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.245-254
    • /
    • 1993
  • In this study, the influence of eccentricity on bearing capacity of strip footing has been investigated by the model tests using the carbon rods, the upper bound method of limit analysis, and Meyerhof method of the limit equilibrium method. In applying the upper bound, the failure mechanism based on model tests was used. There was good agreement between the result of model tests and the upper bound method of limit analysis, but Meyerhof method yielded low bearing capacity and underestimated the effect of eccentricity on bearing capacity. Besides, the influences of footing width, embedment depth and base friction on the bearing capacity have been examined.

  • PDF

Reliagility Analysis of Tension Leg Platforms for Severe Storm Waves (대규모 폭풍에 대한 Tension Leg Platform의 신뢰도해석)

  • 박우선;윤정방
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • This paper presents a method of the reliability analysis for a tension leg platform(TLP)in severe storm waves by using the first passage concept of the random tensile stress in the tendons. In the present method, two failure conditions are considered ;i.e., the exceedance of the ultimate tensile capacity and the occurrence of the negative tension. In order to consider the correlation effects between the failure events for each corner resulted from the rupture of all tencons at one corner, a new system limit state for a rectangular shaped TLP is developed, which is defined in terms of the TLP motions in the vertical plane ;i.e., heave, roll, and pitch. To illustrate the validity of the present method, the numerical analysis is carried out for two TLP's with different structural dimensions. Then, the results are compared with those by other methods.

  • PDF

The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures (콘크리트 옹벽구조물의 한계상태설계법 적용성 평가)

  • Yang, Taeseon;Jeong, Jongki;Seo, Junhee;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.59-66
    • /
    • 2014
  • Nowadays, some studies are performed in order to introduce the Limit State Design method widely used in foreign work sites. LRFD (Load Resistance Factor Design) method is widely used in the fields in which the data accumulation is possible - such as deep foundations, and shallow foundations, etc. The limit state design in the retaining walls is insufficient in the country owing to difficulties applying load tests. The limit state design method for retaining wall structures are studied based upon the National Retaining wall Design Standard legislated in 2008 by Ministry of Land, Transport, and Maritime Affairs. In this paper several retaining walls were calculated according to LRFD design criteria analysis using the general program with limit state design method and the factor of safety for sliding and overturning. Comparing with their results, the Taylor's series simple reliability analysis was performed. In the analysis results of retaining wall section, safety factors calculated by LRFD were found to be lowered than those calculated in current WSD, and it is possibly judged to be economic design by changing wall dimensions. In the future, pre-assessment of the geotechnical data for ensuring the reliability and the studies including reinforced retaining walls with ground anchor are needed.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

Simultaneous Analysis of 17 Organophosphorous Pesticides in Blood by Automated Head Space-SPME GC/MS (HS-SPME-GC/MS에 의한 혈액중 17종 유기인계 농약의 동시분석법)

  • Rhee, Jong-Sook;Jung, Jin-Mi;Lee, Han-Sun;Yeom, Hye-Sun;Lee, Sang-Ki;Park, Yoo-Sin;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.429-440
    • /
    • 2010
  • HS-SPME-GC/MS was studied and optimized for the determination of 17 orgarnophosphorous pesiticides (OPPs: chlorpyrifos, chlorpyrifos-methyl, demeton-s-methyl, diazinon, dimethoate, EPN, fenitrothion, fenthion, malathion, methidathion, monocrotophos, parathion, phenthoate, phosphamidon, sulfotep, terbufos, triazophos) in blood. Optimum SPME parameters were selected: choice of SPME fiber (85 ${\mu}m$ polyacrylate), pH effect (0.5 N HCl), salt effect ($Na_2SO_4$, 0.2 g; 20%), headspace incubation temperature ($80^{\circ}C$), headspace incubation time (1 min), headspace adsorption time (30 min) and GC desorption time (2 min). These parameters were optimized using HS-SPME autosampler coupled with gas chromatography-mass spectrometry (GC-MS). Method validation was carried out in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and recovery in blood. The assay was linear over 0.5~5.0 mg/l ($r^2$=0.955~1.000). Limit of detection (LOD) and limit of quantitation (LOQ) in blood were determined 0.03~0.3 mg/l (S/N=3) and 0.1~1.1 mg/l (S/N=10), respectively. Relative recovery with 0.5, 1 and 5 mg/l (in blood) were 90.8%, 98.5% and 94.1%, respectively. This method will be applied to the determination of the orgarnophosphorous pesticides in postmortem blood. The proposed protocol can be an attractive alternative to be used in routine toxicological analysis.

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF