• Title/Summary/Keyword: limestone powder

Search Result 113, Processing Time 0.039 seconds

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

The Properties of High Flowing Concrete with the Kind and Content of Limestone Powder (석회석 미분말의 종류 및 함유율 변화에 따른 고유동 콘크리트의 특성)

  • 조중동;홍상희;조병영;장기영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.267-270
    • /
    • 1999
  • In this paper, the application of limestone powder, which produced by being gathered electrically in the process of manufacturing of cement, to high fluidity concrete are investigated. According to the experimental results, especially, high viscosity and the loss of air content are accomplished by applying limestone powder as the partial substitution of fine aggregates. In case of hardened concrete, high compressive strength can be achieved by using limestone powder.

  • PDF

Compressive Strength Characteristics of Non-Cement Composition Added with Limestone Powder (석회석미분말이 첨가된 비시멘트 조성물의 압축강도 특성)

  • Kim, Young-Min;Jung, Jae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.178-179
    • /
    • 2019
  • The cement industry is a large amount of carbon dioxide emission industry, and research and development on non-cement composition is underway at the time when the absolute reduction of cement use is urgently needed. In addition, limestone fine powder is a by-product and is required to be recycled in terms of resource circulation. The compressive strength of the lime cement powder added noncement composition showed that the compressive strength increased as the limestone powder was added. It is believed that limestone fine powder played a role of stimulant such as alkali activator in non-cement composition.

  • PDF

The effect of limestone chemical porperties and substitution amount on mechanical properties of cement mortar (석회석 혼합재의 화학특성이 시멘트 모르타르에 미치는 영향)

  • Suh, Dong-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.163-164
    • /
    • 2022
  • Using the limestone powder as material that can substitute the clinker, it seems to get positive effect as filler and enhance workability of cement but the substitution amount and chemical properties of it can affect mechanical properties of cement. Thus, in this study, the effect limestone powder that has other properties on cement is evaluated. As a result, the workability enhancing effect was confirmed but deterioration of compressive strength was also checked. Later, with the view of workability, the experiment that the possibility of strength compensation by decreasing unit water weight of limestone powder cement is planned when the limestone powder is used.

  • PDF

Influence of Limestone Powder on the Hydration of Cement Contained much Chloride (석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향)

  • Jeong, Chan-Il;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

An experimental study on engineering properties of concrete containing fly-ash, slag powder and limestone powder (석회석미분말을 사용한 4성분계 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Hong, Ji-Hoon;Yum, Jun-Haun;Kim, Jung-Bin;Jeong, Yong;Lee, Seong-Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.561-564
    • /
    • 2006
  • This study is aimed for investigating the engineering properties of concrete containing fly ash, slag powder and limestone powder. The results of this study are as follows; As limestone powder is incresed, slump, air loss and strength is reduced, variation ratio of length is reduced, dynamic modulus of elasticity and neutralization depth is incresed.

  • PDF

Mechanical and Durable Properties of Concrete Containing Slag and Limestone Powder (석회석 미분말을 사용한 3성분계 콘크리트의 역학적 특성 및 내구성능 연구)

  • 오병환;박대균;박재명;이종화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.569-574
    • /
    • 2002
  • Generally, the limestone powder is known to have some advantages in rheology of fresh concrete, resistance of material separation, and enhancement of strength at early ages. Recently, great attention is being paid to limestone blended cements in the manufacture of concrete, especially in the countries of Europe. The purpose of the present study is to establish the mechanical and durable properties of concrete containing slag and limestone powder. In this paper, the chloride ion penetration test, rapid carbonation test and rapid freezing-thawing test is carried out to study durability of concrete with various content of limestone powder. Futhermore, the strength of concrete is evaluated with various ages.

  • PDF

Durability Characteristics of Limestone Powder added Concrete for Environment-Friendly Concrete (석회석미분말을 첨가한 친환경 시멘트콘크리트의 내구 특성)

  • Choi, Woo Hyeon;Park, Cheol Woo;Jung, Won Kyung;Jeon, Beom Joon;Kim, Gyu Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • During the manufacturing of Portland cement, CO2 gas is also necessarily produced through both decarbonation of calcium carbonate and kiln burning. By partially replacing the Portland cement with limestone powder, which is an inert filler in a concrete mixture, CO2 consumption can be reduced in a construction field. This study is to investigate the fundamental durability characteristics of limestone powder added concrete. Experimental variable was the replacement ratio of limestone powder from 0% to 25% with 5% increment. Durability characteristics were investigated by resistance to freeze-thaw, alkali-silica reaction and de-icing chemical in addition to the properties of fresh concrete. From test results, it was observed that the addition of limestone powder did not significantly affect the resistance to freeze-thaw reaction and de-icing chemical. The addition of limestone powder reduced the occurrence potential of alkali-silica reaction by reducing an alkali content in Portland cement.

An Analysis on Concrete Properties with the Fineness of Waste Limestone (폐석회석의 분말도 변화에 따른 콘크리트의 특성분석)

  • Ryu, Hyun-Gi;Woo, Jong-Kwon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.85-90
    • /
    • 2007
  • According as industry develops rapidly, problem of resources exhaustion and environmental pollution is appearing. Way to use construction waste that is development of new compound material and Industry product is required. Limestone powder that is Industry product is $CaCO_3$. and vicosity is promotion effect because there is no damage to hydration of cement and powder is very thin and water tightness increases. This research purposed to analyze concrete property changing limestone fineness. According as the limestone powdered replacement ratio increases, slump and unit capacity mass increased, and the air content decreased according as the replacement ratio increases. Compressive strength and tensile strength decreased according as the limestone powder replacement ratio increases.