• Title/Summary/Keyword: limestone mines

Search Result 64, Processing Time 0.026 seconds

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer (인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화)

  • Jeon, Yong-Jung;Kim, Bun-Jun;Ko, Ju-In;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

A Monitoring Strategy on Dispersion of Particulate Matter emitted from Domestic Limestone Open Pit Mines (국내 노천 석회석 광산먼지 확산 모니터링 방안)

  • Yoon, Jinho;Lee, Sang-hun;Seo, Eui Young;Baek, Seunghan
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.475-482
    • /
    • 2021
  • This study proposed a strategy with literature review on effective monitoring of dispersion of the particulate matters (PM) emitted from domestic open pit lime mines. The mines generally produced a large amount of PM through the mine processes such as crushing and transportation of raw or crushed ores. The PM emission from mine facilities or transportation can be assessed using empirical equations which was prepared through the experimental tests to produce PM from ores. For effective monitoring of mine PM dispersion, this study showed a preliminary application of the monitoring network with multiple low-cost sensors around a main PM emission source for each mine site. Therefore, two domestic limestone mine sites were selected for this study, and install the monitoring network with low-cost PM sensors and LTE (Long-term evolution) data communication. Then, preliminary resultant PM data plotted according to monitoring duration showed typical PM dispersion patterns. The quantification of the PM dispersion patterns should be roughly prepared by a PM size-dependent dispersion modeling.

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

Business impact analysis for disaster management of large underground limestone mine (석회석광산 지하대형공간의 재난관리를 위한 업무영향력 분석)

  • Lee, Seong-Min;Kim, Sun-Myung;Lee, Yeon-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.613-623
    • /
    • 2013
  • As Limestone mines have been operated with various environmental, societal and managemental problems depending on their characteristics and developing methods, many great efforts have been applied to solve these problems. Installing the mining facilities underground is one of the successful efforts to keep the sustainable limestone mine development. This effort could reduce these problems. However, unfortunately it made an side effect of constructing a large underground space in mining site. Moreover, this space caused a necessity of various disaster managements for the safety of workers and facilities. This study introduces the priority list of a limestone mining process if there are disasters in underground mining site. This result is coming from the risk assessment and business impact analysis on survey data which were obtained from the miners of that particular limestone mine. According to the result, the highest risk is 'disregard of safety guidelines in crushing & classifier process'. The result also shows the highest priority business, above all things, is 'a pit linked work of in & out process'.

Geochemical Study on Pollution of Heavy Metals in Soils, Plants and Streams in the Vicinity of Abandoned Metal Mines -Dalseong and Kyeongsan Mines- (금속폐광산주변의 토양, 식물 및 하천의 중금속오염에 대한 지화학적 연구 -달성 및 경산광산-)

  • Lee, Jae Yeong;Lee, In Ho;Lee, Sun Yeong
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.597-613
    • /
    • 1996
  • The tonnage of copper and tungsten produced at Dalseong mine by Taehan Tungsten Mining Company from 1961 to 1971 was 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70wt.% WO, but the mine was closed in 1974. Kyeongsan mine is a small abandoned cobalt mine with no data of production. To investigate the pollution level of the mine areas, soils, plants (Ohwi and Pampanini), stream waters and stream sediments were taken and Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr were analysed by ICP. Soils are considerably contaminated by the heavy metals related to ore deposits, The heavy metal contents in plants vary with the species and parts of plants. Stream waters are anomalously high in heavy metals in the vicinity of the mines but the contents decrease downstream in the process of dilution and precipiation. However, heavy metal contents increase very high in stream sediments due to precipiation. To protect environmental damages caused by acid mine drainages wetlands must be constructed outside pits, and it is necessary to fill pits with waters, limestone chips and organic materials, which give reducing and alkaline condition to ores. Under the condition pyrite is protected from oxidation and aqueous iron sulphates precipitate to form stable secondary pyrite.

  • PDF

Development of Work Report for Evaluating KPIs of Truck Haulage Operation in Open Pit and Underground Mines (노천 및 지하 광산 트럭 운반 작업의 핵심성과지표 평가를 위한 작업 일지 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.327-343
    • /
    • 2022
  • The standard work report for trucks was developed that records data on truck haulage operations in open-pit and underground mines, and to evaluate the performance of haulage operations. Work reports used in 5 mines in Korea was secured and analyzed, and items to be included in the standard work report were determined. By analyzing the formulas for key performance indicators (KPIs) proposed by the Global Mining Guidelines Group (GMG), it was possible to determine how to record time-related data. After selecting a limestone underground mine as a research area, the performance of haulage operations was evaluated using a standard work report. As a result, in terms of truck availability, uptime was 46.7%, and both physical and mechanical availability were 100%. In the case of utilization, use of availability was 88.2%, the asset utilization was 41.1%, and operating and effective utilization were 88.2% and 79.2%, respectively. Also, in terms of efficiency, operating efficiency was found to be 89.9%.

A Study on the Mining Method for Limestone Mines with Less Environmental Hazards (환경오염 저감을 위한 석회석 광산개발방안에 대한 연구)

  • 임한욱;김재동;백환조
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.80-91
    • /
    • 2000
  • Open cut mining of limestone is generally considered to be more advantageous than underground mining in recovery, grade control, economics, and safety, but it causes substantial environmental pollutants such as ground vibration, noise, dust. It also changes ground surface and may destroy vegetation. The Halla limestone mine which lies adjacent to Baikdu mountains range is selected for a model study. To reduce environmental hazards, and to conserve original surface and woods, both open cut and underground mining methods must be adopted. In case of sub-level sloping. a unit block of 87m high, 70m wide, and 100∼l20m long is suggested with an estimated overall recovery of 42%. Some suggestions to reduce the environmental hazards are also included. The followings must be considered in determining the degree of fragmentation; the discontinuity conditions in the rock mass and the charge concentration both at the bottom and column of the hole. In addition to adopting a barrier wall for reducing environmental hazards, the probable production from underground mining is also discussed.

  • PDF

The Application of Gassed Bulk Emulsion to Quarry Blasting in Limestone Mine (석회석 광산 채석발파에서 Gassed Bulk Emulsion의 적용)

  • Min, Hyung-Dong;Jeong, Min-Su;Park, Yun-Seok;Lee, Eung-So;Lee, Won-Wook
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • Korean large limestone mines started to employ bulk emulsion explosives to improve the productivity in early 2000s. As the application of the bulk emulsion explosives became common in the mid 2000s, the bulk emulsion application increases overall performance but it tends to decrease the moving and heaving because it lacks in gas volume and heat energy. Therefore, the chemical gassing technique was introduced to improve the blasting efficiency of the existing bulk emulsion explosives. The chemical gassing is a technique to replacing GMB(Glass Micro Balloon), which is used for a sensitizer, with gassing agent to chemically sensitize it. This paper introduces the case of successful application of chemical gassing in a Korean large limestone mine. We also compared and evaluated the blast and work efficiency between bulk emulsion GMB & gassing agent (chemical gassing). The results indicate that the replacement of GMB with gassing agent improved fragmentation in the upper part and toe of a bench as well as moving efficiency of the material.

Efficiency of Heavy Metal Stabilizers in Various Soils (토양 특성에 따른 중금속 안정화 효율 평가)

  • Kim, Young Hyun;Oh, Se Jin;Kum, Donghyuk;Shin, Minhwan;Kim, Dongjin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.231-238
    • /
    • 2021
  • BACKGROUND: Metal contamination of farmlands nearby abandoned mines is a serious environmental problem. This study was conducted to evaluate the efficiency of stabilizers on different type of the soils contaminated with metals. METHODS AND RESULTS: The texture of silt loam soil initially contaminated with heavy metal was artificially adjusted to loam and sandy loam by adding sand, and the soil organic matter content (1.5%) was also altered by adding peat to the soils at 3.5 and 8.0%. The soils were mixed with 3% (w/w) of each limestone, dolomite, and steel slag. For the soils with different textures, the bioavailability of As was found to be the lowest in sandy loam compared to others metals such as Cu, Pb, and Zn. The efficacy of limestone and dolomite was not significantly different compared to the soils having different organic matter contents, but the stabilization efficiency of steel slag increased as the soil organic matter content increased. Moreover, stabilizers showed inhibition effect on the uptake of metals to plant. CONCLUSION: The stabilizers were found as effective materials to immobilize metals in soil and to decrease plant uptake of metals. Studies are needed to deeply elucidate the interaction between influencing factors and various stabilizers.