Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.4.475

A Monitoring Strategy on Dispersion of Particulate Matter emitted from Domestic Limestone Open Pit Mines  

Yoon, Jinho (Department of Environmental Science, Keimyung University)
Lee, Sang-hun (Department of Environmental Science, Keimyung University)
Seo, Eui Young (Institute of Mine Reclamation Research, Mine Reclamation Corporation)
Baek, Seunghan (Institute of Mine Reclamation Research, Mine Reclamation Corporation)
Publication Information
Economic and Environmental Geology / v.54, no.4, 2021 , pp. 475-482 More about this Journal
Abstract
This study proposed a strategy with literature review on effective monitoring of dispersion of the particulate matters (PM) emitted from domestic open pit lime mines. The mines generally produced a large amount of PM through the mine processes such as crushing and transportation of raw or crushed ores. The PM emission from mine facilities or transportation can be assessed using empirical equations which was prepared through the experimental tests to produce PM from ores. For effective monitoring of mine PM dispersion, this study showed a preliminary application of the monitoring network with multiple low-cost sensors around a main PM emission source for each mine site. Therefore, two domestic limestone mine sites were selected for this study, and install the monitoring network with low-cost PM sensors and LTE (Long-term evolution) data communication. Then, preliminary resultant PM data plotted according to monitoring duration showed typical PM dispersion patterns. The quantification of the PM dispersion patterns should be roughly prepared by a PM size-dependent dispersion modeling.
Keywords
particulate matter (PM); dispersion; monitoring; low-cost sensor; mine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Holmes, N.S. and Morawska, L. (2006) A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ., v.40, p.5902-5928. doi: 10.1016/j.atmosenv.2006.06.003   DOI
2 Petavratzi, E., Kingman, S. and Lowndes, I. (2005) Particulates from mining operations: A review of sources. effects and regulations, Miner. Eng., v.18, p.1183-1199. doi: 10.1016/j.mineng.2005.06.017   DOI
3 US EPA (2004) AP42 section 11.19.2 Crushed stone processing and pulverized mineral processing, Available at https://www.epa.gov/sites/default/files/2020-10/documents/c11s1902.pdf
4 US EPA (2004) AP42, Fifth Edition, Volume I Chapter 11: Mineral Products Industry. 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing, Mineral Products Industry, 8/04, 5-7. (October 2015). Available at http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s1902.pdf.
5 World Health Organization (WHO) (1999) Hazard prevention and control in the work environment: Airborne Dust, World Health Organization, (WHO/SDE/OEH/99.14). doi: 10.1093/annhyg/44.5.405
6 IAQM (The Institute of Air Quality Management (2016) Guidance on the assessment of mineral dust impacts for planning, IAQM guidance report on mineral dust.
7 Lee, S.H. (2020) Review on Characteristics and Monitoring of Particulate Matter Emitted from Mining Operation. J. Korean Soc. Miner. Energy Resour., v.57, p.234-242. doi: 10.32390/ksmer.2020.57.2.234   DOI
8 Lowndes, I.S., Silvester, S.A., Kingman, S.W. and Hargreaves, D.M. (2008) The application of an improved multi-scale computational modelling techniques to predict fugitive dust dispersion and deposition within and from surface mining operations, Proceedings of the 12th U.S./North American Mine Ventilation Symposium, K.G. Wallace ed., Reno, NV, ISBN 978-0-615-20009-5. p.359-366.
9 Liu, Z., Wypych, P. and Cooper, P. (1999) Dust generation and air entrainment in bulk materials handling. A Review. Powder Handl. Process., v.11(4), p.421-425.
10 Page, S.J., Volkwein, J.C., Baron, P.A. and Deye, G.J (2000) Particulate penetration of porous foam used as a low flow rate respirable dust size classifier. Appl. Occup. Environ. Hrg., v.15, p.561-568. doi: 10.1080/10473220050028385   DOI
11 Peng, X., Shi, G.L., Zheng, J., Liu, J.Y., Shi, X.R., Xu, J. and Feng, Y.C. (2016) Influence of quarry mining dust on PM2.5 in a city adjacent to a limestone quarry: Seasonal characteristics and source contributions. Sci. Total Environ., v.550, p.940-949. doi: 10.1016/j.scitotenv.2016.01.195   DOI
12 Joseph, G.M.D., Lowndes, I.S. and Hargreaves, D.M. (2018) A computational study of particulate emissions from Old Moor Quarry, UK. J. Wind Eng. Ind. Aerodyn., v.172, p.68-84. doi: 10.1016/j.jweia.2017.10.018   DOI
13 Appleton, T.J., Kingman, S.W., Lowndes, I.S. and Silvester, S.A. (2006) The development of a modeling strategy for thesimulation of fugitive dust emissions from in-pit quarrying activities: a UK case study. Int. J. Min. Reclam. Environ., v.20(1), p.57-82. doi: 10.1080/13895260500396404   DOI
14 Aatos, S. (2003) Luonnonkivituotannon elinkaaren aikaiset ymparistovaikutukset (Environmental effects in natural stone production life cycle), Suomen ymparisto, Luonto ja luonnonvarat v.656, Ymparistoministerio. p.120-127.
15 Arup, O. & Partners (1995) Environmental effects of dust from surface mineral workings: summary report and best practice guides, HMOS.
16 Abu-Allaban, M., Hamasha, S. and Gertler, A. (2006) Road dust resuspension in the vicinity of limestone quarries in jordan. J. Air Waste Manag Assoc., v.56, p.1440-1444. doi: 10.1080/10473289.2006.10464546   DOI
17 Reed, W.R. (2003) An improved model for prediction of PM10 from surface mining operations, Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfilment of the requirements for the degree of doctor in philosophy in mining and minerals engineering.
18 Bluvshtein, N., Mahrer, Y., Sandler, A. and Rytwo, G. (2011) Evaluating the impact of a limestone quarry on suspended and accumulated dust. Atmos. Environ., v.45, p.1732-1739. doi: 10.1016/j.atmosenv.2010.12.055   DOI
19 Petavratzi, E., Kingman, S.W. and Lowndes, I.S. (2007) Lowndes, Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem. Eng. Process, v.46, p.1412-1423. doi: 10.1016/j.cep.2006.11.005   DOI
20 Philip, A.B. and Michael, M.R. (1993) The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations. J. Chem. Educ., p.104-108. doi: 10.1021/ed070p104   DOI
21 Schneider, T. and Hjemsted, K. (1996) Documentation of a dustiness drum test. Ann. Occup. Hyg. Soc., v.40, p.627-643. doi: 10.1093/annhyg/40.6.627   DOI
22 Sumanth, C., Khare, M. and Shukla, K. (2020) Numerical modelling of PM10 dispersion in open-pit mines. doi: 10.1016/j.chemosphere.2020.127454   DOI
23 Sethi, S.A. and Schneider, T. (1996) A gas fluidization dustiness tester. J. Aerosol Sci., v.27(1), p.S305-S306. doi: 10.1016/0021-8502(96)00225-X   DOI
24 Sairanen, M., Rine, M. and Selonen, O. (2018) A review of dust emission dispersions in rock aggregate and natural stone quarries. Int J Min Miner Eng., Int. J. Min. Reclam. Environ., p.196-220. doi: 10.1080/17480930.2016.1271385   DOI
25 Charola, A.E. (1987) Acid Rain Effects on Stone Monuments, chem l supplement., p.436-437. doi: 10.1021/ed064p436
26 Torno, S., Torano, J., Menendez, M. and Gent, M. (2011) CFD simulation of blasting dust for the design of physical barriers. Environ. Earth Sci., v.64 p.77-83. doi: 10.1007/s12665-010-0818-6   DOI
27 US EPA (2004) AERMOD Deposition Algorithms - Science Document (Revised Draft) URL:https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aer_scid.pdf
28 British Occupational Hygiene Society Technology Committee (BOHSTC) (1985) Dustiness estimation methods for dry materials: Part 1, their uses and standardization: Part 2, towards a standard method, Science Reviews, Technical guide no. 4.
29 Cattle, S.R., Hemi, K., Pearson, G.L., and Sanderson, T. (2012) Distinguishing and characterizing point-source mining dust and diffuse-source dust deposits in a semi-arid district of eastern Australia. Aeolian Res., v.6, p.21-29. doi: 10.1016/j.aeolia.2012.07.001   DOI
30 Chang, C.T., Chang, Y.M., Lin, W.Y. and Wu, M.C. (2010) Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan, J. Air Waste Manage. Assoc., v.60, p.1262-1268. doi: 10.3155/1047-3289.60.10.1262   DOI
31 Chaulya, S.K., Chakraborty, M.K. and Singh, R.S. (2001) Air pollution modelling for a proposed limestone quarry. Water Air Soil Pollut., v.126, p.171-191. doi: 10.1023/A:1005279819145   DOI
32 Chakraborty, M.K., Ahmad, M., Singh, R.S., Pal, D., Bandopadhyay, C., and Chaulya, S.K. (2002) Determination of the emission rate from various opencast mining operations. Environ. Model Softw., v.17, p.467-480. doi: 10.1016/S1364-8152(02)00010-5   DOI
33 US EPA (2004) URL: https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aer_scid.pdf
34 Lyons, C.P. and Mark, D. (1994) Development and Testing of a Procedure to Evaluate the Dustiness of Powders and Dusts in Industrial Use. HSE (62/1994).
35 Higman, R.W. (1985) "Dustiness testing. A useful tool", in Ventilation '85, in: Proceedings of the First International Symposium on Ventilation for Contaminant Control (code 10354), Toronto, Ont., Canada., p.693-702.
36 John, A.O. and Randolph Reed W.M. (2004) Characteristics of Fugitive Dust Generated from Unpaved Mine Haulage Roads. International Journal of Surface Mining. Int. J. Min. Reclam. Environ., p.236-252. doi: 10.1080/1389526042000263333   DOI
37 US EPA (2014) AP42: Compilation of Air Pollutant Emission Factors, Available at https://www.epa.gov/air-emissions-factorsand-quantification/ap-42-compilation-air-emissionsfactors#5thed (visited on 21/08/15)
38 Torano, J., Torno, S., Diego, I., Menendez, M. and Gent, M. (2009) Dust emission calculations in open pit storage piles protected by means of barriers, CFD and experimental tests. Environ. Fluid Mech., v.9 p.493-507. doi: 10.1007/s10652-009-9136-5   DOI
39 Hinds, W.C. (1999) Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, 2nd ed. Wiley-Intersci., p.15-53.