• 제목/요약/키워드: lime-silica fume

검색결과 15건 처리시간 0.016초

Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix

  • Fattah, Mohammed Y.;Al-Saidi, A'amal A.;Jaber, Maher M.
    • Geomechanics and Engineering
    • /
    • 제8권1호
    • /
    • pp.113-132
    • /
    • 2015
  • In this study, lime (L), silica fume (SF), and lime-silica fume (L-SF) mix have been used for stabilizing and considering their effects on the soft clay soil. The improvement technique adopted in this study includes improving the behaviour, of a square footing over soft clay through grouting the clay with a slurry of lime-silica fume before and after installation of the footing. A grey-colored densified silica fume is used. Three percentages are used for lime (2%, 4% and 6%) and three percentages are used for silica fume (2.5%, 5%, 10%) and the optimum percentage of silica fume is mixed with the percentages of lime. Several tests are made to investigate the soil behaviour after adding the limeand silica fume. For grouting the soft clay underneath and around the footing, a 60 ml needle was used as a liquid tank of the lime-silica fume mix. Slurried silica fume typically contains 40 to 60% silica fume by mass. Four categories were studied to stabilize soft clay before and after footing construction and for each category, the effectiveness of grouting was investigated; the effect of injection hole spacing and depth of grout was investigated too. It was found that when the soft clay underneath or around a footing is injected by a slurry of lime-silica fume, an increase in the bearing capacity in the range of (6.58-88)% is obtained. The footing bearing capacity increases with increase of depth of grouting holes around the footing area due to increase in L-SF grout. The grouting near the footing to a distance of 0.5 B is more effective than grouting at a distance of 1.0 B due to shape of shear failure of soft clay around the footing.

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

Influence of supplementary cementitious materials on strength and durability characteristics of concrete

  • Praveen Kumar, V.V.;Ravi Prasad, D.
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.75-85
    • /
    • 2019
  • The present study is focused on the mechanical and durability properties of ternary blended cement concrete mix of different grades 30 MPa, 50 MPa and 70 MPa. Three mineral admixtures (fly ash, silica fume and lime sludge) were used as a partial replacement of cement in the preparation of blended concrete mix. The durability of ternary blended cement concrete mix was studied by exposing it to acids HCl and $H_2SO_4$ at 5% concentration. Acid mass loss factors (AMLF), acid strength loss factor (ASLF) and acid durability factor (ADF) were determined, and the results were compared with the control mix. Chloride ions penetration was investigated by conducting rapid chlorination penetration test and accelerated corrosion penetration test on control mix and ternary blended cement concrete. From the results, it was evident that the usage of these mineral admixtures is having a beneficiary role on the strength as well as durability properties. The results inferred that the utilization of these materials as a partial replacement of cement have significantly enhanced the compressive strength of blended concrete mix in 30 MPa, 50 MPa and 70 MPa by 42.95%, 32.48% and 22.79%. The blended concrete mix shown greater resistance to acid attack compared to control mix concrete. Chloride ion ingress of the blended cement concrete mix was low compared to control mix implying the beneficiary role of mineral admixtures.

산업부산물을 사용한 강섬유보강 콘크리트의 장기변형 특성에 관한 연구(I) (A Study on the Long-term Deformation of Steel Fiber Reinforced Concrete Utilizing By-Products of Industry)

  • 박승범;김의성;윤의식;홍석주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.308-314
    • /
    • 1997
  • Shrinkage and creep are the fundamental properties of concrete. These long term deformations can be seen as bothersome(increased deflection) or can be seen as reduction of compressive stress of prestressed concrete. Steel fibers advance the mechanical properties of concrete:tensile strength, ductility, flexural strength, fracture toughness, and post-cracking resistance, etc...Silica fume is pozzolanic material which combines with hydrated lime to generate silicate materials which increase the compressive strength and reduce somewhat the creep of concrete. This paper is the result of the long-term deformation by silica fume and steel fibers with varying percentages.

  • PDF

산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1) (Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1))

  • 박승범
    • 콘크리트학회지
    • /
    • 제6권4호
    • /
    • pp.141-152
    • /
    • 1994
  • 산업부산물의 플라이애쉬와 실리카흄 및 국내 부존자원이 풍부한 규사분말, 생석회 및 발포용 알루미늄 분말과 취성개선을 위한 보강용 섬유를 사용한 경량 고강도의 시멘트복합체의 개발을 위하여 오토클래브 양생에 의한 열수 알카리분위기에서의 섬유 자체의 열화현상을 조사함과 아울러 배합요인별로 건재용 경량섬유보강 규산칼슘계 시멘트복합에를 제조하여 그 역학적 특성에 관한 연구를 수행하였다. 시험결과, 탄소섬유 및 내알카리성 유리섬유는 보강용 섬유로서 적합함이 확인되었으며, 경량 섬유보강 규산칼슘계 시멘트복합체의 압축, 인장, 휨강도는 플라이애쉬와 실리카흄 혼입율 및 섬유혼입율이 증가함을 따라 증가하는 경향을 나타내었고 또한 섬유혼입율 증가에 따라 현저히 휨인성이 증가하였으며, 탄소섬유보강의 경유가 유리섬유보강의 경우에 비하여 압축, 인장, 휨강도 및 휨인성은 다소 높은 경향을 나타내었다.

Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material

  • Jo, Byung-Wan;Chakraborty, Sumit;Choi, Ji Sun;Jo, Jun Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.15-28
    • /
    • 2016
  • With the aim to reduce the atmospheric $CO_2$, utilization of the carbonated lime produced from the aqueous carbonation reaction for the synthesis of a cementitious material would be a promising approach. The present investigation deals with the aqueous carbonation of slaked lime, followed by hydrothermal synthesis of a cementitious material utilizing the carbonated lime, silica fume, and hydrated alumina. In this study, the aqueous carbonation reaction was performed under four different conditions. The TGA, FESEM, and XRD analysis of the carbonated product obtained from the four different reaction conditions was performed to evaluate the efficacy of the reaction conditions used for the production of the carbonated lime. Additionally, the performance of the cementitious material was verified analyzing the physical characteristics, mechanical property and setting time. Based on the results, it is demonstrated that the material produced by the hydrothermal method possesses the cementing ability. Additionally, it is revealed that the mortar prepared using the alternative cementitious material yields $33.8{\pm}1.3MPa$ compressive strength. Finally, a plausible reaction scheme has been proposed to explain the overall performances of the aqueous carbonation as well as the hydrothermal synthesis of the cementitious material.

Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar

  • Singh, Lok Pratap;Goel, Anjali;Bhattachharyya, Sriman Kumar;Ahalawat, Saurabh;Sharma, Usha;Mishra, Geetika
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권2호
    • /
    • pp.207-217
    • /
    • 2015
  • The influence of powdered and colloidal nano-silica (NS) on the mechanical properties of cement mortar has been investigated. Powdered-NS (~40 nm) was synthesized by employing the sol-gel method and compared with commercially available colloidal NS (~20 nm). SEM and XRD studies revealed that the powdered-NS is non-agglomerated and amorphous, while colloidal-NS is agglomerated in nature. Further, these nanoparticles were incorporated into cement mortar for evaluating compressive strength, gel/space ratio, portlandite quantification, C-S-H quantification and chloride diffusion. Approximately, 27 and 37 % enhancement in compressive strength was observed using colloidal and powdered-NS, respectively, whereas the same was up to 19 % only when silica fume was used. Gel/space ratio was also determined on the basis of degree of hydration of cement mortar and it increases linearly with the compressive strength. Furthermore, DTG results revealed that lime consumption capacity of powdered-NS is significantly higher than colloidal-NS, which results in the formation of additional calcium-silicate-hydrate (C-S-H). Chloride penetration studies revealed that the powdered-NS significantly reduces the ingress of chloride ion as the microstructure is considerably improved by incorporating into cement mortar.