• 제목/요약/키워드: likelihood image

검색결과 220건 처리시간 0.033초

Detection of the Damaged Trees by Pine Wilt Disease Using IKONOS Image

  • Lee, S.H.;Cho, H.K.;Kim, J.B.;Jo, M.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.709-711
    • /
    • 2003
  • The purpose of this study is to detect the damaged red pine trees by pine wilt disease using high resolution satellite image of IKONOS Geo. IKONOS images are segmented with eCognition image processing software. A segment based maximum likelihood classification was performed to delineate the pine stand. The pine stands are regarded as a potential damage area. In order to develop a methodology to detect the location of damaged trees from the high resolution satellite image, black and white aerial photographs were used as a simulated image. The developed method based on filtering technique. A local maximum filter was adapted to detect the location of individual tree. This report presents a part of the first year results of an ongoing project.

  • PDF

다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류 (Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images)

  • 황도현;황병준;윤홍주
    • 대한원격탐사학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2013
  • 그린란드 북쪽 정착빙 부근 해빙을 분류하기 위하여 현장 자료, 다중 주파수 SAR (Synthetic Aperture Radar) 영상, 텍스쳐 영상을 사용하였다. 해빙의 유형은 first year ice, highly deformed ice, ridge, moderately deformed ice 총 4개로 분류하였다. K-means 알고리즘을 사용하여 텍스쳐 영상으로 분류한 경우 SAR 영상을 사용했을 때 보다 전체 정확도가 높게 나타났으나, 최대 우도법(maximum likelihood) 알고리즘을 사용하였을 때 텍스쳐 영상의 전체 정확도는 때에 따라서 높게 나타났다. 단일 영상 및 다중 영상을 사용했을 때 결과를 비교하면, K-means 알고리즘을 사용했을 때는 다중 영상을 이용하는 것이 전체 정확도가 높게 나타났다. 최대 우도법 알고리즘을 사용했을 경우, 단일 영상을 사용했을 때와 다중 영상을 사용했을 때 클래스별 분류 정확도가 차이가 있어 단일 영상과 다중 영상을 적절하게 사용해야 한다고 판단된다.

화질의 국소적 변화를 고려한 의용화상처리 (Medical Image Processing with Local Variati on of the Image Quality)

  • 홍승홍
    • 대한전자공학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 1975
  • 잡음을 포함한 저화질의용화상의 배경과 목적대상정을 분할하는 환경영역은 중요한 정보로 의학상 진단에 큰 의의를 갖고 있다. 이 논문의 목적은 화상의 농도변화를 정총화하여 통계적수법에 의해 환경영역을 결정하는 threshold를 구하는 방법을 제시하고 이를 비 scintigram에 적용하여 실험을 행했다. 전화상을 64개의 소영역으로 나누고 경계영역이 존재하는 부분온 선택하며 이 부분에 maximum likelihood법을 적용하여 threshold를 결정한뒤 내삽법에 의해 전화소에 대한 threshold를 구하고 수곽을 포함한 2식화면을 구했다. 이의 결과는 인간의 인식과 거의 같은 결과로 동적해석방법의 유효성이 증명되었다. The boundary has been one of the most important information in radiographic images and the degrees of difficulty involved varies greatly with the quality of the picture. These Buantifications are the means to diagnoses. The purpose of this paper is to quantify intensity variation and the threshold decision which is based on statistical principles and is developed to detect limits in liver scintigrams the entire picture is devide4 into 64 small regions. The kurtosis and variances for each smal region are used as indications to select the histograms the thresholds are computed according to the method o(maximum likelihood which minimizes the probability o( misclassification. Therefore Ive have demonstrated the applicability of the boundary detection and proved good agreement with human recognition, and we can use it for the diagnosis data of liver disease.

  • PDF

정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘 (Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis)

  • 김용일;김동현;박민호
    • 대한공간정보학회지
    • /
    • 제4권2호
    • /
    • pp.181-193
    • /
    • 1996
  • 본 연구는 원격탐사의 수치화상분류에 적용된 바 없는 정준상관분석(Canonical Correlation Analysis)기법을 무감독분류한 위성화상데이터에 적용하여 토지피복분류하는 새로운 방법을 개발하는 것을 목적으로 한다. 개발된 분류기법은 기존의 분류기법인 최대우도분류기법에 비해 분류기준용 표본데이터 선정이 용이함을 알 수 있었다. 즉, 정준상관분석에 의한 분류결과는 분류기준용 표본데이터의 선정위치에 거의 영향을 받지 않는다. 또한 무감독분류 후 정준상관분석에 의해 결정된 각 군집의 토지피복은 최대우도분류를 위한 사전정보로 활용정보로 활용가능하다. 동일한 분류기준용 표본데이터 사용시, 무감독분류 후 정준상관분석에 의한 분류가 최대우도분류보다 분류정확도가 우수하였다. 이상과 같은 결과로 판단해 볼 때 연구에서는 시도된 분류기법은 원격탐사의 분류기법 분야에서 실용화 될 수 있으며, 나아가서는 GIS 데이터베이스 구축에 중요한 역학을 할 수 있을 것이다.

  • PDF

사후확률 결합에 의한 분류정확도 향상에 관한 연구 (A study on classification accuracy improvements using orthogonal summation of posterior probabilities)

  • 정재준
    • Spatial Information Research
    • /
    • 제12권1호
    • /
    • pp.111-125
    • /
    • 2004
  • 위성영상 분류에 관한 주요 주제 중 하나는 분류 정확도 향상에 있다. 동일지역에 대한 동일시기의 위성영상을 취득할 수 있는 기회가 많아지는 현실을 감안할 때, 복수의 위성영상 데이터를 이용하여 분류정확도가 향상된 분류결과를 도출하는 것은 의미 있는 일일 것이다. 본 연구 주제는 최대우도법을 사용하여 계산된 데이터의 사후확률 및 분류 불확실도를 Dempster-Shafer의 증거이론에 적용하여 분류정확도를 향상시키고자 하는 것이다. 분석결과 개별적인 데이터 분류나 데이터간 융합에 의한 분류보다 본 연구에서 제안한 방법이 전체정확도와 Kappa 지수 모두 높은 정확도를 나타냈으며, 정확도 차에 대한 검정을 실시하여 본 연구에서 제안한 방법이 다른 방법에 비해 우수함을 통계적으로 증명하였다.

  • PDF

Decomposition of category mixture in a pixel and its application for supervised image classification

  • Matsumoto, Masao;Arai, Kohei;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.514-519
    • /
    • 1992
  • To make an accurate retrieval of the proportion of each category among mixed pixels (Mixel's) of a remotely sensed imagery, a maximum likelihood estimation method of category proportion is proposed. In this method, the observed multispectral vector is considered as probability variables along with the approximation that the supervised data of each category can be characterized by normal distribution. The results show that this method can retrieve accurate proportion of each category among Mixel's. And a index that can estimate the degree of error in each category is proposed. AS one of the application of the proportion estimation, a method for image classification based on category proportion estimation is proposed. In this method all pixel in a remotely sensed imagery are assumed to be Mixel's, and are classified to most dominant category. Among the Mixel's, there exists unconfidential pixels which should be categorized as unclassified pixels. In order to discriminate them, two types of criteria, Chi square and AIC, are proposed for fitness test on pure pixel hypothesis. Experimental result with a simulated dataset show an usefulness of proposed classification criterion compared to the conventional maximum likelihood criterion and applicability of the fitness tests based on Chi square and AIC,

  • PDF

해부병리조직에 대한 칼라 영상분석 (Color Image Analysis of Histological tissue Sections)

  • 최흥국
    • 한국정보처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.253-260
    • /
    • 1999
  • 본 논문에서는 조합된 텍스쳐와 칼라 정보로부터 다변수의 선형 구별 알고리즘을 사용하여 영상분할에 대한 새로운 방법론의 개발을 제시한다. 그 칼라 텍스쳐는 칼라 영상의 공간과 색깔의 밴드로부터 한 화소가 갖는 3X3의 마스크에서 Haralick 과 Pressman의 텍스쳐 특성들을 계산했다. 모두 9X28개의 텍스쳐 특성들 중에서 학습을 기반으로 크게 식별자(classifier)에 영향을 주는 특성들을 도출하였으며 결과적으로 뽑혀진 10개의 특성이 한 영상을 4부분으로 분할하는데 사용되어졌다. 이 방법론의 결과로 얻어진 영상은 고전적인 칼라와 텍스쳐 분할 방법론의 상자식별자(Box Classifier)와 Maximum Likelihood 식별기들과 비교했다. 이것은 Fastred-Lightgreen으로 염색된 전립선암이 조직에서 얻은 영상을 통해 비교를 했을 경우에 잘 나타난다. 학습 데이터를 통해 나타난 이 새로운 방법론은 97.5%의 정확한 식별성으로 또한 검증된 최상의 방법론중의 하나이다. 이 결과들이 더 많은 영상에 사용된다면, 이 방법론은 칼라와 텍스쳐가 분할에 관련됨으로써 보다 정확한 영상을 분할하기 위한 효율적인 도구가 될 것이다.

  • PDF

APPLICATION OF LIKELIHOOD RATIO MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT LAI CHAU, VIETNAM

  • LEE SARO;DAN NGUYEN TU
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.314-317
    • /
    • 2004
  • The aim of this study was to evaluate the susceptibility from landslides in the Lai Chau region of Vietnam, using Geographic Information System (GIS) and remote sensing data, focusing on the relationship between tectonic fractures and landslides. Landslide locations were identified from an interpretation of aerial photographs and field surveys. Topographic and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image processing techniques, and a scheme of the tectonic fracturing of the crust in the Lai Chau region was established. In this scheme, Lai Chau was identified as a region with low crustal fractures, with the grade of tectonic fracture having a close relationship with landslide occurrence. The factors found to influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature, distance from drainage, lithology, distance from a tectonic fracture and land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability-likelihood ratio method. The results of the analysis were verified using landslide location data, and these showed a satisfactory agreement between the hazard map and existing landslide location data.

  • PDF

${\alpha}$-stable 랜덤잡음에 노출된 이미지에 적용하기 위한 비선형 잡음제거 알고리즘에 관한 연구 (A Study on Nonlinear Noise Removal for Images Corrupted with ${\alpha}$-Stable Random Noise)

  • 한희일
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.93-99
    • /
    • 2007
  • 본 논문에서는 ${\alpha}$-stable 확률분포를 갖는 잡음에 열화된 이미지의 화질을 개선하는 알고리즘을 제안한다. 제안한 진폭제한 평균필터(amplitude-limited sample average filter)는 heavy-tailed 가우시안 잡음환경 하에서 maximum likelihood estimator (MLE)임을 증명한다. 그리고, 이 알고리즘에 해당하는 error norm은 Huber의 minimax norm과 일치하고, 위에서 언급한 잡음 환경 하에서 efficacy를 최대화한다는 점에서 최적의 필터임을 보인다. 이 개념을 미리어드(myriad) 필터와 결합하여 진폭제한 미리어드 필터(amplitude-limited myriad filter)를 제안하고 실험을 통하여 이의 성능을 확인한다.

Distance Extraction by Means of Photon-Counting Passive Sensing Combined with Integral Imaging

  • Yeom, Seok-Won;Woo, Yong-Hyen;Baek, Won-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.357-361
    • /
    • 2011
  • Photon-counting sensing is a widely used technique for low-light-level imaging applications. This paper proposes a distance information extraction method with photon-counting passive sensing under low-lightlevel conditions. The photo-counting passive sensing combined with integral imaging generates a photon-limited elemental image array. Maximum-likelihood estimation (MLE) is used to reconstruct the photon-limited image at certain depth levels. The distance information is extracted at the depth level that minimizes the sum of the standard deviation of the corresponding photo-events in the elemental image array. Experimental and simulation results confirm that the proposed method can extract the distance information of the object under low-light-level conditions.