• 제목/요약/키워드: likelihood distance

검색결과 173건 처리시간 0.022초

MFCM의 성능개선을 통한 블라인드 비선형 채널 등화 (Blind Nonlinear Channel Equalization by Performance Improvement on MFCM)

  • 박성대;우영운;한수환
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2158-2165
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적 함수(fitness function)와 가우시안 가중치가 적용된 멤버십 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 백터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing(SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

RMC를 이용한 미지 선원의 방향, 거리 예측 (Estimating the Direction and Distance of an Unknown Radiation Source Using RMC)

  • 신영준;김기현;이계민
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.118-125
    • /
    • 2016
  • 방사능 누출 사고 시 대응이나 핵안보 검증을 위한 핵물질 탐지에 있어서, 방사선을 방출하는 미지의 선원에 대한 위치 정보를 파악하는 것은 중요하다. 그러한 기구 중 하나인 회전 변조 시준기는 미지 선원을 원격 감지하기 위한 장비로서 영상화를 통해 선원의 위치 탐지가 가능하다. 본 논문에서는 Kowash의 연구를 기초로 회전 변조 시준기의 시스템 모델과 그를 영상화하는 알고리즘을 소개한다. 하지만 결과 영상화 이미지는 선원의 방향은 보여줄 수 있으나 선원의 거리를 찾지 못하는 문제점이 있다. 또한 선원의 실제 방향뿐 아니라 $180^{\circ}$ 대칭방향에서도 선원을 추정하는 모호성 문제를 안고 있다. 본 논문에서 우리는 영상화 결과의 방향 대칭적 모호성을 해결하고, 두 대의 RMC를 이용해 거리를 추정하는 방법을 제안한다. 그리고 이를 RMC 시뮬레이션 데이터를 이용하여 성능을 검증한다.

Upper Bounds for the Performance of Turbo-Like Codes and Low Density Parity Check Codes

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.5-9
    • /
    • 2008
  • Researchers have investigated many upper bound techniques applicable to error probabilities on the maximum likelihood (ML) decoding performance of turbo-like codes and low density parity check (LDPC) codes in recent years for a long codeword block size. This is because it is trivial for a short codeword block size. Previous research efforts, such as the simple bound technique [20] recently proposed, developed upper bounds for LDPC codes and turbo-like codes using ensemble codes or the uniformly interleaved assumption. This assumption bounds the performance averaged over all ensemble codes or all interleavers. Another previous research effort [21] obtained the upper bound of turbo-like code with a particular interleaver using a truncated union bound which requires information of the minimum Hamming distance and the number of codewords with the minimum Hamming distance. However, it gives the reliable bound only in the region of the error floor where the minimum Hamming distance is dominant, i.e., in the region of high signal-to-noise ratios. Therefore, currently an upper bound on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix cannot be calculated because of heavy complexity so that only average bounds for ensemble codes can be obtained using a uniform interleaver assumption. In this paper, we propose a new bound technique on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix using ML estimated weight distributions and we also show that the practical iterative decoding performance is approximately suboptimal in ML sense because the simulation performance of iterative decoding is worse than the proposed upper bound and no wonder, even worse than ML decoding performance. In order to show this point, we compare the simulation results with the proposed upper bound and previous bounds. The proposed bound technique is based on the simple bound with an approximate weight distribution including several exact smallest distance terms, not with the ensemble distribution or the uniform interleaver assumption. This technique also shows a tighter upper bound than any other previous bound techniques for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix.

Asymptotic Performance of ML Sequence Estimator Using an Array of Antennas for Coded Synchronous Multiuser DS-CDMA Systems

  • Kim, Sang G.;Byung K. Yi;Raymond Pickholtz
    • Journal of Communications and Networks
    • /
    • 제1권3호
    • /
    • pp.182-188
    • /
    • 1999
  • The optimal joint maximum-likelihood sequence estima-for using an array of antennas is derived for synchronous direct sequence-code division multiple access (DS-CDMA) system. Each user employs a rate 1/n convolutional code for channel coding for the additive white Gaussian noise (AWGN) channel. The array re-ceiver structure is composed of beamformers in the users' direc-tions followed by a bank of matched filters. The decoder is imple-mented using a Viterbi algorithm whose states depend on the num-ber of users and the constraint length of the convolutional code. The asymptotic array multiuser coding gain(AAMCG)is defined to encompass the asymptotic multiuser coding gain and the spatial information on users' locations in the system. We derive the upper and lower bounds of the AAMCG. As an example, the upper and lower bounds of AAMCG are obtained for the two user case where each user employes the maximum free distance convolutional code with rate 1/2. The enar-far resistance property is also investigated considering the number of antenna elements and user separations in the space.

  • PDF

NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF A CONCAVE RECEIVER OPERATING CHARACTERISTIC CURVE VIA GEOMETRIC PROGRAMMING

  • Lee, Kyeong-Eun;Lim, Johan
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.523-537
    • /
    • 2011
  • A receiver operating characteristic (ROC) curve plots the true positive rate of a classier against its false positive rate, both of which are accuracy measures of the classier. The ROC curve has several interesting geometrical properties, including concavity which is a necessary condition for a classier to be optimal. In this paper, we study the nonparametric maximum likelihood estimator (NPMLE) of a concave ROC curve and its modification to reduce bias. We characterize the NPMLE as a solution to a geometric programming, a special type of a mathematical optimization problem. We find that the NPMLE is close to the convex hull of the empirical ROC curve and, thus, has smaller variance but positive bias at a given false positive rate. To reduce the bias, we propose a modification of the NPMLE which minimizes the $L_1$ distance from the empirical ROC curve. We numerically compare the finite sample performance of three estimators, the empirical ROC curve, the NMPLE, and the modified NPMLE. Finally, we apply the estimators to estimating the optimal ROC curve of the variance-threshold classier to segment a low depth of field image and to finding a diagnostic tool with multiple tests for detection of hemophilia A carrier.

방향성을 고려한 공간적 조건부 자기회귀 모형 (Directional conditionally autoregressive models)

  • 경민정
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.835-847
    • /
    • 2016
  • 공간통계 방법 중 지역에 대한 어떤 집합체 자료나 평균자료들을 분석하는데 일반적으로 공간적 자기회귀(conditionally autoregressive) 모형을 사용한다. 공간적 자기회귀 모형에 정의되는 공간적 이웃 소지역들은 중점의 거리나 근접성으로 정의된다. Kyung과 Ghosh (2010)는 방향에 따라서 이웃간 자기상관성의 크기가 다른 공간적 확장 모형을 제시하였다. 제안된 방향적 조건부 자기회귀(directional conditionally autoregressive) 모형은 고유 이방성을 모형화하여 기존의 CAR과정을 일반화한다. 제시한 방향적 조건부 자기회귀모형의 최대우도 추정량의 특성에 대해 설명하였고, 스코틀랜드 그레이터 글래스고우의 로그변환된 부동산 가격에 적용하여 조건부 자기회귀모형과 비교하였다.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

The Impact of Interfirm Linkages on Chinese MNEs' Entry into Foreign Markets

  • Su, Hang;Hong, Sungjin
    • East Asian Economic Review
    • /
    • 제26권2호
    • /
    • pp.119-142
    • /
    • 2022
  • This paper uses social network theory and the internationalization process model (IPM) to determine how external network linkages influence the location choices of multinational enterprise from emerging economies (EMNEs); specifically, whether past alliance experience influences location choices and its impact on the subsequent entry of MNEs from emerging economies. This paper applies survival analysis using initial and secondary investments from 2,000 Chinese A-share listed companies that entered 90 countries between 1997 and 2018 to analyze both the initial and subsequent entries of Chinese outward foreign direct investments (OFDIs) in major host countries. The findings indicate that an MNE's previous experience with a company from a particular country will increase the likelihood of an initial investment in that country. Previous alliance experience may accelerate the foreign investment process of EMNE and stimulate firms making a commitment to a position in a foreign network, regardless of cultural distance and stage of internationalization. Alliance before initial investment may increase the likelihood and speed of entering a host country as wholly owned subsidiaries and that network linkages not only significantly influence the internationalization process of small and medium-sized enterprises, as indicated by the IPM, but also that of large listed firms.

확률적 방법을 이용한 음성 개성 변환 (Voice Personality Transformation Using a Probabilistic Method)

  • 이기승
    • 한국음향학회지
    • /
    • 제24권3호
    • /
    • pp.150-159
    • /
    • 2005
  • 본 논문에서는 임의의 음성을 특정 화자가 발성한 것처럼 들리도록 변환하는 음성 개성 변환 알고리즘에 대해 연구하였다. 제안된 기법은 화자의 음성을 LPC 켑스트럼, 피치, 발성 속도를 사용하여 표현하였으며 각각에 대한 변환 규칙을 생성하여 변환을 수행하였다. LPC 켑스트럼은 혼합 가우시안 모델을 이용한 확률적으로 모델링하고, 두 화자간의 대응관계를 조건 확률로 나타내었다. 확률적인 모델링에 필요한 각종 파라메터들을 얻기 위해 최대 가능도 기법이 사용되었으며, 변환 LPC 켑스트럼은 최소 자승 오차 방법에 근거하여 얻어지도록 하였다. 운율 변환을 위한 변수로 본 논문에서는 피치와 발성 속도를 사용하였으며, 두 음성간의 평균값 비율을 사용하여 운율 변환을 수행하였다. 제안된 기법은 기존 벡터 양자화 기반의 기법과 비교에서, 객관적인 척도로 사용한 평균 켑스트럼 거리 감소율, 가능도 증가율 면에서 우수한 성능을 나타내었다. 주관적인 테스트에서도 기존의 방법과 유사한 인식율을 얻었으며 특히 완만하게 변화하는 스펙트럼 궤적에 따른 고음질이 얻어짐을 확인할 수 있었다.

위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구 (A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS)

  • 조명희;부기동;이정협;이광재
    • 한국지리정보학회지
    • /
    • 제3권4호
    • /
    • pp.73-86
    • /
    • 2000
  • 본 연구에서는 다시기 위성영상과 GIS(geographic information system)를 이용하여 과수재배분포도 작성에 있어 다양한 분류기법을 적용하여 보다 효율적인 기법도출에 그 목적을 두고 있다. 이를 위해 다시기별 Landsat TM영상과 현지 조사자료 및 기존 과수재배 면적 통계자료를 활용하여 각 분류기법에 대한 시기별 및 과수별 분포 특성과 비교 분석함으로서 과수재배분포도 작성에 있어 효과적인 분류기법을 도출하였다. 다시기 Landsat TM 영상을 이용한 과수재배 분포도작성을 위해서는 초가을 영상으로 MLC(maximum likelihood classification)기법을 적용하는 것이 가장 효율적인 것으로 나타났다. 또한 GIS를 통한 공간분석으로 행정별 과수재배의 면적을 효과적으로 추출함과 동시에 과수재배분포의 형태를 효율적으로 파악 할 수 있음을 규명하였다.

  • PDF