• Title/Summary/Keyword: lignin content

Search Result 341, Processing Time 0.025 seconds

An Evaluation of the Anti-oxidant Activity of Fermented Defatted Sesame Seeds (참깨탈지박 발효 추출물의 항산화 활성 평가)

  • Kim, Eun-Ji;Jo, Seung-Wha;Yim, Eun-jung;Kim, Kum-Suk;Choi, Beom-Seok;Lee, Nam-Rye;Jung, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.452-459
    • /
    • 2020
  • This study was conducted to investigate the total lignin content and anti-oxidant activity in extracts of defatted sesame seeds (DSS) fermented with 15 strains of Bacillus subtilis. The anti-oxidant activities of DSS were analyzed both before and after fermentation. The total lignan content of the DSS extracts fermented with BCH3678 (1,613.8 mg/l) and BCH3572 (1,599.5 mg/l) were relatively high compared to other strains. Anti-oxidant activity was determined according to phenolic compound and flavonoid content and DPPH radical scavenging rate; the highest total phenolic compound content was provided by the DSS with SRCM103716 at 2,803.3 mg GAE/g which returned total flavonoid content of 1,553.1 mg/g as strong correlation of its anti-oxidant activity. The DSS extract fermented by SRCM103716 at 37℃ for 24 hr showed the highest DPPH scavenging rate at 66.5%. The fermented DSS extracts, regardless of strain, demonstrated higher anti-oxidative activity than the unfermented control, and these results suggest that such extracts could be useful as a potential source of bioactive compounds.

Chemical Composition, In situ Digestion Kinetics and Feeding Value of Oat Grass (Avena sativa) Ensiled with Molasses for Nili-Ravi Buffaloes

  • Khan, Muhammad Ajmal;Sarwar, M.;Nisa, M.;Iqbal, Z.;Khan, M.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1127-1133
    • /
    • 2006
  • This study examined the effect of cane molasses and fermentation time on chemical composition and characteristics of oat grass silage (OGS) and its in situ digestion kinetics, intake, digestibility, milk yield and composition in buffaloes (Bubalus bubalis). Oat grass (OG) harvested at 50-days of age was ensiled in laboratory silos with cane molasses at the rate of 0, 2, 4 and 6% of OG dry matter (DM) for 30, 35 and 40 days. Silage pH was decreased while lactic acid content increased with increasing level of cane molasses and fermentation time. Dry matter (DM), crude protein (CP) and true protein (TP) content of OGS were (p<0.05) significantly higher with higher cane molasses levels. However, they were not affected by the fermentation time. Similar trends were observed for neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, acid detergent lignin and ash content of OGS. The OG ensiled for 30-days with 2% molasses was screened from laboratory study and used to determine comparative in situ DM and NDF digestion kinetics of OG and its silage. In situ DM and NDF digestibilities of OG were significantly (p<0.05) higher than OGS. Ruminal DM and NDF lag time, rate and extent of digestion of OG and its silage were similar. Two experimental diets of OG and OGS were formulated using 75:25 forage to concentrate ratio on a DM basis. Dry matter and CP intakes were similar in lactating buffaloes fed either OG- or OGS-based diets. However, NDF intake was higher in buffaloes fed the OG-compared with OGS-based diet. Apparent DM, CP and NDF digestibilities were similar in lactating buffaloes fed either OG- or OGS-based diets. Milk yield (4% FCM) was similar in buffaloes fed either OG-(10.3 kg/d) or OGS-(9.95 kg/d) based diets. Milk fat, total solids and true protein content were higher with OG compared with the OGS diet. Solids not fat and CP content were similar in milk of buffalo fed either OG or OGS. The results of this study indicate that OG ensiled with 2% molasses could safely replace 75% DM of green oat fodder in the diets of lactating buffaloes without negatively affecting intake, digestibility, milk yield and composition.

Effect of Torrefaction Condition on The Chemical Composition and Fuel Characteristics of Larch wood (낙엽송재의 화학적 조성 및 연료적 특성에 대한 반탄화 조건의 영향)

  • Kim, Sang Tae;Lee, Jae-Jung;Park, Dae-Hak;Yang, In;Han, Gyu-Seong;Ahn, Byoung Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.122-134
    • /
    • 2015
  • This study was conducted to investigate the potential of torrefied larch wood as a raw material of pellets. First of all, larch chip was torrefied at the temperatures of 230, 250 and $270^{\circ}C$ for 30, 50 and 70 min. Secondly, moisture content, moisture absorption, higher heating value and ash content of the torrefied chip were measured to examine the effects of torrefaction conditions on the fuel characteristics of larch. Thirdly, surfaces of the torrefied chip were observed by light microscope (LM), field emission scanning microscope (FE-SEM) and SEM-energy dispersive spectroscopy (EDXS). With the increases of torrefied temperature and time, contents of lignin increased and those of hemicellulose reduced. Moisture content of torrefied larch chip was greatly lower than that of non-torrefied chip. Moisture absorption of the torrefied chip decreased as torrefaction temperature increased. As torrefaction temperature increased, higher heating value and ash content of larch chip increased. However, durability of torrefied-larch pellets was remarkably lower comparing to non-torrefied-larch pellets. When surface of larch chip was observed by LM and FE-SEM, surface color and cell wall of the chip was getting darker and more collapsed with the increases of torrefaction conditions. Through the analysis of SEM-EDXS, distribution and quantity of lignin existing on the surface of larch chip increased with the increases of torrefied conditions. In conclusion, $270^{\circ}C$/50 min might be an optimal condition for the torrefaction of larch with the aspect of fuel characteristics, but torrefaction condition of $230^{\circ}C$/30 min should be considered according to the durability of torrefied-larch pellets.

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

Studies on the Pollution-Free Pulping by Nitric Acid - Nitric Acid Pulping of Alkali-Pretreated Wood - (질산(窒酸)을 이용한 무공해(無公害)펄프 제조(製造)에 관한 연구(硏究) - 알카리 전처리재(前處理材)의 질산(窒酸)펄프화에 관하여 -)

  • Cho, Nam Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.61 no.1
    • /
    • pp.27-36
    • /
    • 1983
  • This study was performed to get the basic information on nitric acid pulping of beech wood. In order to reduce the consumption of nitric acid, alkali pretreated woods were applied to a nitric acid pulping process. It consisted of nitric acid treatment to a high residual lignin content and the subsequent delignification with alkali, required far less chemical than the single stage method. At the first stage of nitric pulping, pulp yield descreased with increasing cooking time and 3 percent of nitric acid was more effective on the delignification of wood than 1 or 2 percent. Alkali pretreatment of wood improved significantly the rate of delignification, and 79 percent of the pretreated yield was good enough for excellent delignification. The dissolution of carbohydrate (mainly xylose) was increased with increasing cooking time, especially at the second stage. It would be considered that carbonyl groups introduced to polysaccharides in wood by nitric acid oxidation caused the degradation of carbohydrates.

  • PDF

Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

  • Cu, T.T.T.;Nguyen, T.X.;Triolo, J.M.;Pedersen, L.;Le, V.D.;Le, P.D.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.280-289
    • /
    • 2015
  • Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane ($CH_4$) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest $CH_4$ yield of 443 normal litter (NL) $CH_4kg^{-1}$ volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL $CH_4kg^{-1}$ VS, respectively. The BMP experiment also demonstrated that the $CH_4$ production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95.This model was applied to calculate the $CH_4$ yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

Nutritive Evaluation of Some Fodder Tree Species during the Dry Season in Central Sudan

  • Fadel Elseed, A.M.A.;Amin, A.E.;Khadiga,;Abdel Ati, A.;Sekine, J.;Hishinuma, M.;Hamana, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.844-850
    • /
    • 2002
  • The potential nutritive value was studied on leaves of seven fodder trees in Central Sudan during dry season at two distinct periods, the early dry and the late. The chemical composition, mineral concentration, in vitro organic matter digestibility (IVOMD), in situ OM or nitrogen degradability and estimated metabolizable energy showed a wide variation among fodder tree species and between different periods of the dry season. Crude protein (CP) ranged from 285 to 197 g/kg DM at early dry season, with a significant reduction in late dry season. Ziziphus spina-christi and Balanites aegyptiaca showed the least reduction in CP content. The NDF, ADF and lignin were about 200, 160 and 19 g/kg DM, respectively at the early period, and significantly increased at the late period of the dry season, except for lignin of Z. spina-christi. For mineral concentration, all fodder tree leaves were rich in calcium but poor in phosphorus. In situ OM degradability significantly decreased at the late period of dry season, but values remained as high as over 600 g/kg OM. At both periods, Z. spina-christi showed the highest value, while the lowest was recorded in Acacia seyal. The IVOMD showed a similar trend to those of in situ OM degradability, except for A. seyal. The nitrogen degradability was highest in B. aegyptiaca and lowest in Z. spina-christi at both periods. A significant and positive correlation had existed between CP and IVOMD or in situ OM degradability (r=0.68, p<0.05; r=0.77, p<0.05, respectively). Also, a significant but negative correlation was found between condensed tannins and nitrogen degradability (r=-0.87, p<0.01). Results demonstrated that Z. spina-christi potentially has a good nutritive value as dry season feed or supplement, while A. seyal tends to be less promising. A. nubica and B. aegyptiaca may be a useful source for degradable protein, even though it may have a limited supply of energy to animals. A. tortilis, A. mellifera and A. ehrenbergiana may have potential value for a supplementation of energy or protein, if they were harvested in the early dry season or in wet season as preserved feed. It is highly recommended to supplement with an appropriate amount of phosphorus when these fodder trees were used.

Effect of Boiling Methods on the Physicochemical Properties of Su Ri Chwi(Synurus palmatopinnonatifidus var. indivisus KITAM.) (삶는 방법에 따른 수리취(Synurus palmatopinnonatifidus var. indivisus KITAM.)의 이화학적 특성)

  • Kim, Myung-Hee;Park, Yong-Kon;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.6
    • /
    • pp.701-705
    • /
    • 1992
  • The effect of different boiling methods(with distilled water, 1% salt added water and 1% sodium bicarbonate added water) on the physicochemical properties of Su Ri Chwi (Synurus palmatopinnonatifidus var. indivisus KITAM.) were investigated. The addition of 1% sodium bicarbonate (baking soda) to the boiling water resulted in an increase in the pH of effluent. The green value of cooked Su Ri Chwi was simillar to the raw material. Su Ri Chwi cooked in 1% sodium bicarbonate added for 10minutes retained higher chlorophyll and vitamin C contents than those of Su Ri Chwi treated in distilled water and 1% salt water for 30minutes. 70% of the water-soluble proteins in raw Su Ri Chwi was albumin. However, albumin was decreased by the method used. The contents of glutelin, globulin, and prolamin were increased by the cooking, vice versa. The contents of NDF, ADF, cellulose, and lignin were decreased regardless of the method used, on the other hand, the content of hemicellulose was increased.

  • PDF

Studies on Productivity and Nutrient Quality of Forage Rape (Brassica napus Subsp. oleifera) VI. Influence of Sowing and Harvest Date on Yield and Nutritional Quality (사초용 유채 생산성과 사료가치에 관한 연구 VI. 파종기별 예취시기가 수량 및 영양가치에 미치는 영향)

  • Ahn, Gae-Soo;Kwon, Byung-Sun;Lee, Jung-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.335-340
    • /
    • 1989
  • In order to find out the optimum harvest (clipping) date combined with sowing date on yield and nutrient Quality of forage rape which is suitable at the southern part of Korea, Velox, introduced variety was grown from Sep. 1987 to May 1988 at Sunchon National University, and yield and nutrient Quality of plant were observed. As harvest date and sowing date were delayed, the plant length was longest, number of branch and leaves per main stem were increased in the time of full bloom clipping and Sep. 24 sowing but stem diameter was thickest in the early sowing. Fresh yield was heaviest in the time of flowering clipping and Sep. 24 sowing but the most dry matter yield was heaviest in the time of full bloom clipping and Sep. 24 sowing. Content of crude protein was highest and that of crude fiber such as NDF, ADF, hemicellulose, cellulose and lignin were lowest in the late time of clipping and sowing. Further more IVDMD was high and dry matter yield and digestible dry matter yield were highest in the time of flowering clipping and Sep. 24 sowing. Judging from the results reported above, at optimum harvest (clipping) date combined with sowing date for yield and nutrient Quality of forage rape seemed to be the time of flowering clipping and Sep. 24 sowing.

  • PDF

Optimization of Solid State Fermentation of Mustard (Brassica campestris) Straw for Production of Animal Feed by White Rot Fungi (Ganoderma lucidum)

  • Misra, A.K.;Mishra, A.S.;Tripathi, M.K.;Prasad, R.;Vaithiyanathan, S.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.208-213
    • /
    • 2007
  • The objective of the experiment was to determine the optimum cultural [moisture levels (55, 60 and 70%), days of fermentation (7, 14 and 21), temperature (25 and $35^{\circ}C$) of incubation)] and nutritional parameters (urea addition (0 and 2%) and variable levels of single super phosphate (0.25 and 0.50% SSP)) for bio-processing of the mustard (Brassica campestris) straw (MS) under solid-state fermentation (SSF) system. The performance of SSF was assessed in terms of favorable changes in cell wall constituents, protein content and in vitro DM digestibility of the MS. Sorghum based inoculum (seed culture) of Ganoderma lucidum to treat the MS was prepared. The 50 g DM of MS taken in autoclavable polypropylene bags was mixed with a pre-calculated amount of water and the particular nutrient in the straw to attained the desired levels of water and nutrient concentration in the substrate. A significant progressive increase in biodegradation of DM (p<0.001), NDF (p<0.01) and ADF (p<0.05) was observed with increasing levels of moisture. Among the cell wall constituents the loss of ADF fraction was greatest compared to that of NDF. The loss of DM increased progressively as the fermentation proceeded and maximum DM losses occurred at 28 days after incubation. The protein content of the treated MS samples increased linearly up to the day $21^{th}$ of the incubation and thereafter declined at day $28^{th}$, whereas the improvement in in vitro DM digestibility were apparent only up to the day $14^{th}$ of the incubation under SSF and there after it declined. The acid detergent lignin (ADL) degradation was slower during the first 7 days of SSF and thereafter increased progressively and maximum ADL losses were observed at the day $28^{th}$ of the SSF. The biodegradation of DM and ADL was not affected by the variation in incubation temperature. Addition of urea was found to have inhibitory effect on fungal growth. The effect of both the levels (0.25 and 0.50) of SSP addition in the substrate, on DM, NDF, ADF, cellulose and ADL biodegradation was similar. Similarly, the protein content and the in vitro DM digestibility remain unaffected affected due to variable levels of the SSP inclusion in the substrate. From the results it may be concluded that the incubation of MS with 60 percent moisture for 21 days at $35^{\circ}C$ with 0.25 percent SSP was most suitable for MS treatment with Ganoderma lucidum. Maximum delignification, enrichment in the protein content and improvement in in vitro DM digestibility were achieved by adopting this protocol of bioprocessing of MS.