• Title/Summary/Keyword: lignin compounds

Search Result 103, Processing Time 0.028 seconds

Basic Studies on the Pyrolysis of Lignin Compounds (리그닌 화합물의 열분해에 관한 기초 연구)

  • ;John R. Obst
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • Lignin model compounds I-lV were pyrolyzed at 315$^{\circ}C$. The mixture compounds pyrolized were analyzed by GC-MS spectrometry. The results were summarized as follows : 1. From the pyrolysis of lignin model compound I and II, 0.45mo1 of guaiacol, 0.5mol of dimethoxyphenol(DMP), and 0.12 and 0.23mo1 of dimethoxyacetonphenone(DMAP) were produced respectively. 2. In the pyrolysis of lignin model compound III and IV, 0.26mol of guaiacol, 0.30mo1 of DMP, and 0.09 and 0.15mo1 of trimethoxyaretonphenone(TMAP) were produced respectively 3. Pyrolysis mechanism of lignin model compounds are dehydrated at first, and $\beta$-04 linkage cleavaged, and then guaiacol, DMP, DMAP and TMAP were produced. The above results show that lignin model compound I and II produce more aromatic compounds than lignin model compound III and IV. This is reason that veratryl unit structures may pyrolize easier than trimethoxyphenol unit structures. The closer research is proceeding.

  • PDF

Catabolic Pathway of Lignin Derived-Aromatic Compounds by Whole Cell of Phanerochaete chrysosporium (ATCC 20696) With Reducing Agent

  • Hong, Chang-Young;Kim, Seon-Hong;Park, Se-Yeong;Choi, June-Ho;Cho, Seong-Min;Kim, Myungkil;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.168-181
    • /
    • 2017
  • Whole cell of Phanerochaete chrysosporium with reducing agent was applied to verify the degradation mechanism of aromatic compounds derived from lignin precisely. Unlike the free-reducing agent experiment, various degraded products of aromatic compounds were detected under the fungal treatment. Our results suggested that demethoxylation, $C_{\alpha}$ oxidation and ring cleavage of aromatic compounds occurred under the catabolic system of P. chrysosporium. After that, degraded products stimulated the primary metabolism of fungus, so succinic acid was ultimately main degradation product of lignin derived-aromatic compounds. Especially, hydroquinone was detected as final intermediate in the degradation of aromatics and production of succinic acid. In conclusions, P. chrysosporium has an unique catabolic metabolism related to the production of succinic acid from lignin derived-aromatic compounds, which was meaningful in terms of lignin valorization.

Fungal Metabolism of Environmentally Persistent Compounds: Substrate Recognition and Metabolic Response

  • Wariishi, Hiroyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.422-430
    • /
    • 2000
  • Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.

  • PDF

Component Analysis of Liguefied Lignins (액화리그닌의 성분분석)

  • 황병호;조국란;공영토;도금현
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 1999
  • This study was conducted to examine the change in the structure of the lignin during liquefaction of kraft pulp lignin in Pinus korainsis and lignin sulfonic acid. The lignin liquefied compounds were extracted with chloroform from aqueous, liquefied lignins. Through the examination by IR, H($^{13}$C) - NMR and GC-MS spectrometers, phenolic compounds such as diguaiacol, acetic acid phenyl ester, phenol, 1-phenyl ethanone were identified with many of unknown phenolic compounds.

  • PDF

Interaction of Oxygen and Chlorine Dioxide in Pulp Bleaching (I) -Studies on the Degradation of Lignin Model Compounds- (펄프 표백시 산소와 이산화염소의 상호작용 (제1보) - 리그닌 모델화합물 연구 -)

  • 윤병호;황병호;김세종;최경화
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.74-78
    • /
    • 2003
  • The structural property of phenolic and non-phenolic lignin has an effect on the reaction rate of lignin by oxygen and chlorine dioxide respectively. Moreover, the undesirable degradation of cellulose followed by lignin degradation is influenced by chemical charge and reaction time. In this paper, several lignin model compounds were used to illuminate the interaction of oxygen and chlorine dioxide by varying the position of O and D(OD, DO, ODO and DOD), and gas chromatography method was used to investigate the degradation of lignin by determining the content of methoxyl groups in lignin. It was shown that structural properties of lignin models were more influential on the degradation and demethylation of lignin than the above combination. Combination of oxygen and chlorine dioxide, however, was more effective in degradation of lignin than only one stage, and three stages than two stages.

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • Eom, Hee-Jun;Hong, Yoon-Ki;Park, Young-Moo;Chung, Sang-Ho;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF

Identification and Characterization of Ligninolytic Enzyme by Serratia marcescens HY-5 isolated from the Gut of Insect

  • Kim, Gi-Deok;Sin, Dong-Ha;Son, Gwang-Hui;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.473-476
    • /
    • 2002
  • A lignin degradation bacteria, symbiotic bacteria was isolated from the gut of Sympetrum depressiusculum and tested for its lignin degrading activity using lignin model compounds and related aromatic compounds. The strain was identified as Serratia marcescens HY-5 based on the 165 rDNA, cellular fatty acid composition, biochemical and physiological characteristics. S. marcescens showed 40-50% lignin degrading activity in the media that contained vaillin, guaiacol and dealkaline lignin. S. marcescens showed three ligninase activities [Jaccase, lignin peroxidase(LiP) and Manganase peroxidase(MnP)]. Addition of dealkaline lignin to the basal media increased about 6fold of laccase activity. Vanillic acid or vanillin increase 1.3fold of MnP activity and p-coumaric acid increased 12fold of LiP activity which added to the basal medium.

  • PDF

Biological activities of lignin hydrolysate-related compounds

  • Lee, Si-Seon;Monnappa, Ajay Kalanjana;Mitchell, Robert J.
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.265-274
    • /
    • 2012
  • Lignin hydrolysates contain many different chemical species, including ferulic acid, coumaric acid, vanillic acid, vanillin, syringaldehyde and furfural. From the perspective of biofuels, these compounds are problematic and can cause downstream loss of product if not removed prior to beginning the fermentative process. In contrast, a search for these compounds within the literature turns up many papers where the same compounds have beneficial properties pertaining to human health, including as antioxidants and in cancer prevention, or are involved in bacterial cell-to-cell signaling. Consequently, this article reviews the dual nature of these and other compounds found in lignin hydrolysates, highlighting both their detrimental and beneficial activities.

Synthesis of Dimeric Lignin Model Compounds - Veratrylglycerol-β-vanillylalcohol ether compounds - (리그닌 이양체(二量體) 모델화합물(化合物)의 합성(合成) - Veratrylglycerol-β-vanillylalcohol ether 화합물(化合物) -)

  • Zhao, Julan;Hwang, Byung-Ho
    • Journal of Forest and Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 1996
  • Two dilignols composed of ${\beta}$-O-4 structure, a important substructure compound in lignin, was synthesized in high yield in a series of the synthetic studies of lignin model compounds. The dimers were identified with $^1H$ and $^{13}C$-NMR and Mass spectroscopy. The important compound of among them, the final synthetic compound [IV].is called 1-(3,4-dimethoxyphenyl)-2-(2'-methoxy-4'-hydroxymethylphenoxy)-propanediol-l,3. This dimeric lignin model compounds should be usefull for the studies of lignin reactions such as pulping, bleaching, pyrolysis, hydrogenolysis, oxidation, reduction, biodegradation, and chemical utilization.

  • PDF

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhydrogenolysis Method(I) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성(I))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.79-85
    • /
    • 1990
  • Many kinds of acetosolv lignin including ricestraw and spruce lignin were pyrolyzed. and liquefied in the autoclave reactor using 50% tetralin and m-cresol solution respectively as soluble solvent and Co-Mo as catalyst. In order to promote deoxyhydrogenolysis reaction $H_2$ gas was supplied into the reactor. The ratio between lignin and the soluble solvent are lg and 10cc. The reaction conditions are $200^{\circ}-700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure and 100-500rpm of the reactor stirrer. By the deoxyhydrogenolysis liquefaction reaction, the main chemical structures of lignin which are aryl-alkyl-${\beta}$-0-4 ether, phenylcoumaran and biphenyl etc. are easily destroyed into liqufied aromatic compounds and aliphatic compunds linked with aromatic compounds. The percent yield of monomeric phenols on the weight bvase of lignin reacted reached to 12-14% by the chemical analytic GC-MS etc.

  • PDF