Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.5.265

Biological activities of lignin hydrolysate-related compounds  

Lee, Si-Seon (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology)
Monnappa, Ajay Kalanjana (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology)
Mitchell, Robert J. (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology)
Publication Information
BMB Reports / v.45, no.5, 2012 , pp. 265-274 More about this Journal
Abstract
Lignin hydrolysates contain many different chemical species, including ferulic acid, coumaric acid, vanillic acid, vanillin, syringaldehyde and furfural. From the perspective of biofuels, these compounds are problematic and can cause downstream loss of product if not removed prior to beginning the fermentative process. In contrast, a search for these compounds within the literature turns up many papers where the same compounds have beneficial properties pertaining to human health, including as antioxidants and in cancer prevention, or are involved in bacterial cell-to-cell signaling. Consequently, this article reviews the dual nature of these and other compounds found in lignin hydrolysates, highlighting both their detrimental and beneficial activities.
Keywords
Antioxidant; Hydrolysates; Lignocellulosic biomass; Phenolics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Lodovici, M., Guglielmi, F., Meoni, M. and Dolara, P. (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 39, 1205-1210.   DOI   ScienceOn
2 Baczek-Kwinta, R., Filek, W., Grzesiak, S. and Hura, T. (2006) The effect of soil drought and rehydration on growth and antioxidative activity in flag leaves of triticale. Biol. Plantarum. 50, 55-60.   DOI
3 Jain, M., Nandwal, A., Kundu, B., Kumar, B., Sheoran, I., Kumar, N., Mann, A. and Kukreja, S. (2006) Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture. Biol. Plantarum. 50, 303-306.   DOI
4 Horvath, E., Pal, M., Szalai, G., Paldi, E. and Janda, T. (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plantarum. 51, 480-487.   DOI
5 Lemini, C., Jaimez, R., Avila, M. E., Franco, Y., Larrea, F. and Lemus, A. E. (2003) In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicol. Ind. Health 19, 69.   DOI
6 Lemini, C., Silva, G., Timossi, C., Luque, D., Valverde, A., González-Martinez, M., Hernández, A., Rubio-Poo, C., Chavez Lara, B. and Valenzuela, F. (1997) Estrogenic effects of p-hydroxybenzoic acid in CD1 mice. Environ. Res. 75, 130-134.   DOI   ScienceOn
7 Pugazhendhi, D., Pope, G. and Darbre, P. (2005) Oestrogenic activity of p hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J. Appl. Toxicol. 25, 301-309.   DOI   ScienceOn
8 Kumar, S., Priyadarsini, K. and Sainis, K. (2002) Free radical scavenging activity of vanillin and o-vanillin using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. Redox Rep. 7, 35-40.   DOI   ScienceOn
9 Prince, P. S. M., Dhanasekar, K. and Rajakumar, S. (2011) Preventive effects of vanillic acid on lipids, bax, bcl-2 and myocardial infarct size on isoproterenol- induced myocardial infarcted rats: a biochemical and in vitro study. Cardiovasc. Toxicol. 11, 58-66.   DOI   ScienceOn
10 Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Kobayashi, M., Tamesada, M. and Yagi, K. (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol. Pharm. Bull. 32, 1215-1219.   DOI   ScienceOn
11 Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Watari, A., Kobayashi, M., Tamesada, M. and Yagi, K. (2010) Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl 4-Induced Liver Injury. Biol. Pharm. Bull. 33, 983-987.   DOI   ScienceOn
12 Chong, K. P., Rossall, S. and Atong, M. (2009) In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma Boninense. J. Agr. Sci. 1, 15-20.
13 Kim, S. J., Kim, M. C., Um, J. Y. and Hong, S. H. (2010) The beneficial effect of vanillic acid on ulcerative colitis. Molecules 15, 7208-7217.   DOI   ScienceOn
14 Dhananjaya, B. L., Nataraju, A., Raghavendra Gowda, C. D., Sharath, B. K. and D'Souza, C. J. M. (2009) Vanillic acid as a novel specific inhibitor of snake venom 5'-nucleotidase: a pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Mosc) 74, 1315-1319.   DOI
15 Van Dyk, T. K., Templeton, L. J., Cantera, K. A., Sharpe, P. L. and Sariaslani, F. S. (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J. Bacteriol. 186, 7196-7204.   DOI   ScienceOn
16 Kamaya, Y., Tsuboi, S., Takada, T. and Suzuki, K. (2006) Growth stimulation and inhibition effects of 4-hydroxybenzoic acid and some related compounds on the freshwater green alga Pseudokirchneriella subcapitata. Arch. Environ. Contam. Toxicol. 51, 537-541.   DOI
17 Touyz, R. M. and Briones, A. M. (2010) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens. Res. 34, 5-14.
18 Ohsaki, Y., Shirakawa, H., Koseki, T. and Komai, M. (2008) Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J. Agr. Food Chem. 56, 2825-2830.   DOI   ScienceOn
19 Suzuki, A., Kagawa, D., Fujii, A., Ochiai, R., Tokimitsu, I. and Saito, I. (2002) Short-and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am. J. Hypertens. 15, 351-357.   DOI   ScienceOn
20 Bonomini, F., Tengattini, S., Fabiano, A., Bianchi, R. and Rezzani, R. (2008) Atherosclerosis and oxidative stress. Histol. Histopathol. 23, 381.
21 Wang, B., Ouyang, J., Liu, Y., Yang, J., Wei, L., Li, K. and Yang, H. (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J. Cardiovasc. Pharmacol. 43, 549.   DOI   ScienceOn
22 Yeh, Y., Lee, Y. T., Hsieh, H. S. and Hwang, D. F. (2009) Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J. Food Drug Anal. 17, 123-132.
23 Schaefer, A. L., Greenberg, E., Oliver, C. M., Oda, Y., Huang, J. J., Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K. and Sufrin, J. R. (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454, 595-599.   DOI   ScienceOn
24 Mitchell, R. J., Lee, S. K., Kim, T. and Ghim, C. M. (2011) Microbial Linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Rep. 44, 1-10.   DOI   ScienceOn
25 Whetten, R. and Sederoff, R. (1995) Lignin biosynthesis. Plant Cell 7, 1001.
26 Zhang, Z., Liao, L., Moore, J., Wu, T. and Wang, Z. (2009) Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 113, 160-165.   DOI   ScienceOn
27 Aragno, M., Parola, S., Tamagno, E., Brignardello, E., Manti, R., Danni, O. and Boccuzzi, G. (2000) Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochem. Pharmacol. 60, 389-395.   DOI   ScienceOn
28 Hamden, K., Allouche, N., Damak, M. and Elfeki, A. (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 180, 421-432.   DOI   ScienceOn
29 Nomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. and Taniguchi, H. (2003) Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro. Bioorg. Med. Chem. 11, 3807-3813.   DOI   ScienceOn
30 Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., Sasaki, H. and Morishita, H. (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ induced diabetic mice and KK Ay mice. Biofactors 21, 315-319.   DOI
31 Sander, C. S., Chang, H., Hamm, F., Elsner, P. and Thiele, J. J. (2004) Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int. J. Dermatol. 43, 326-335.   DOI   ScienceOn
32 Lin, F. H., Lin, J. Y., Gupta, R. D., Tournas, J. A., Burch, J. A., Selim, M. A., Monteiro-Riviere, N. A., Grichnik, J. M., Zielinski, J. and Pinnell, S. R. (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Invest. Dermatol. 125, 826-832.   DOI   ScienceOn
33 Seo, Y., Kim, S., Boo, Y., Baek, J., Lee, S. and Koh, J. (2011) Effects of p coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol. 36, 260-266.   DOI   ScienceOn
34 Saija, A., Tomaino, A., Trombetta, D., De Pasquale, A., Uccella, N., Barbuzzi, T., Paolino, D. and Bonina, F. (2000) In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm. 199, 39-47.   DOI   ScienceOn
35 Kehrer, J. P. (1993) Free radicals as mediators of tissue injury and disease. CRC Crit. Rev. Toxicol. 23, 21-48.   DOI   ScienceOn
36 Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., Bakogeorgou, E., Kouimtzoglou, E., Blekas, G. and Boskou, D. (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 6, R63-74.   DOI   ScienceOn
37 Khanduja, K. L., Avti, P. K., Kumar, S., Mittal, N., Sohi, K. K. and Pathak, C. M. (2006) Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism. BBA-Gen. Subjects 1760, 283-289.   DOI   ScienceOn
38 Chang, C., Chiu, J., Tseng, L., Chang, C., Chien, T., Wu, C. and Lui, W. (2006) Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells. Eur. J. Clin. Invest. 36, 588-596.   DOI   ScienceOn
39 Hudson, E., Dinh, P. A., Kokubun, T., Simmonds, M. S. J. and Gescher, A. (2000) Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 9, 1163.
40 Kawabata, K., Yamamoto, T., Hara, A., Shimizu, M., Yamada, Y., Matsunaga, K., Tanaka, T. and Mori, H. (2000) Modifying effects of ferulic acid on azoxymethane- induced colon carcinogenesis in F344 rats. Cancer Lett. 157, 15-21.   DOI   ScienceOn
41 Srinivasan, M., Rukkumani, R., Ram Sudheer, A. and Menon, V. P. (2005) Ferulic acid, a natural protector against carbon tetrachloride induced toxicity. Fundam. Clin. Pharmacol. 19, 491-496.   DOI   ScienceOn
42 Sudheer, A. R., Chandran, K., Marimuthu, S. and Menon, V. P. (2005) Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: a dose-dependent study. Toxicol. Mech. Method 15, 375-381.   DOI   ScienceOn
43 Mussatto, S. I. and Roberto, I. C. (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technol. 93, 1-10.   DOI   ScienceOn
44 Herrmann, K. and Nagel, C. W. (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 28, 315-347.   DOI   ScienceOn
45 Butterfield, D. A., Castegna, A., Pocernich, C. B., Drake, J., Scapagnini, G. and Calabrese, V. (2002) Nutritional approaches to combat oxidative stress in Alzheimer's disease. J. Nutr. Biochem. 13, 444-461.   DOI   ScienceOn
46 Mattila, P. and Kumpulainen, J. (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agr. Food Chem. 50, 3660-3667.   DOI   ScienceOn
47 Alamed, J., Chaiyasit, W., McClements, D. J. and Decker, E. A. (2009) Relationships between free radical scavenging and antioxidant activity in foods. J. Agr. Food Chem. 57, 2969-2976.   DOI   ScienceOn
48 Cai, Y. Z. (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872-2888.   DOI   ScienceOn
49 Soobrattee, M., Neergheen, V., Luximon-Ramma, A., Aruoma, O. and Bahorun, T. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat. Res-Fund. Mol. M. 579, 200-213.   DOI   ScienceOn
50 Sultana, R., Ravagna, A., Mohmmad Abdul, H., Calabrese, V. and Butterfield, D. A. (2005) Ferulic acid ethyl ester protects neurons against amyloid beta- peptide (1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J. Neurochem. 92, 749-758.   DOI   ScienceOn
51 Vauzour, D., Corona, G. and Spencer, J. P. E. (2010) Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 501, 106-111.   DOI   ScienceOn
52 Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M. and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96, 673-686.   DOI   ScienceOn
53 Palmqvist, E. and Hahn-Hagerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol. 74, 17-24.   DOI   ScienceOn
54 Klemm, D., Heublein, B., Fink, H. P. and Bohn, A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit. 44, 3358-3393.   DOI   ScienceOn
55 Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technol. 101, 4851-4861.   DOI   ScienceOn
56 Ezeji, T. C., Qureshi, N. and Blaschek, H. P. (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 18, 220-227.   DOI   ScienceOn
57 Ezeji, T., Qureshi, N. and Blaschek, H. P. (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97, 1460-1469.   DOI   ScienceOn
58 Zaldivar, J. and Ingram, L. O. (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66, 203-210.   DOI   ScienceOn
59 Zaldivar, J., Martinez, A. and Ingram, L. O. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33.   DOI   ScienceOn
60 Lee, S. and Mitchell, R. J. (2011) Detection of toxic lignin hydrolysate-related compounds using an inaA: luxCDABE Fusion Strain. J. Biotechnol. (In press)
61 Qureshi, N., Saha, B. C., Hector, R. E., Hughes, S. R. and Cotta, M. A. (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I--Batch fermentation. Biomass Bioenerg. 32, 168-175.   DOI   ScienceOn
62 Sanchez, O. J. and Cardona, C. A. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol. 99, 5270-5295.   DOI   ScienceOn
63 Li, H., Kim, N. J., Jiang, M., Kang, J. W. and Chang, H. N. (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresource Technol. 100, 3245-3251   DOI   ScienceOn
64 Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A. and Blaschek, H. P. (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technol. 99, 5915- 5922.   DOI   ScienceOn
65 Ezeji, T. and Blaschek, H. P. (2008) Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource Technol. 99, 5232-5242.   DOI   ScienceOn
66 Boyer, L. J., Vega, J. L., Klasson, K. T., Clausen, E. C. and Gaddy, J. L. (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg. 3, 41-48.   DOI   ScienceOn
67 Schwarz, W. H., Zverlov, V. V., Berezina, O. and Velikodvorskaya, G. A. (2006) Bacterial acetone and butanol production by industrial fermentation in the soviet union: use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biot. 71, 587-597.   DOI   ScienceOn
68 Kelly, C., Jones, O., Barnhart, C. and Lajoie, C. (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl. Biochem. Biotechnol. 148, 97-108.   DOI   ScienceOn
69 Hahn-Hagerdal, B., Palmqvist, E. and Almeida, J. S. (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62, 447-454.   DOI   ScienceOn
70 Boopathy, R., Bokang, H. and Daniels, L. (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. 11, 147-150.   DOI
71 Castellino, N., Elmino, O. and Rozera, G. (1963) Experimental research on toxicity of furfural. Arch. Environ. Health 7, 574-582.   DOI   ScienceOn
72 Zhang, M., Franden, M. A. and Pienkos, P. T. (2009) Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267.   DOI   ScienceOn
73 Blaschek, H. P., Ezeji, T. and Qureshi, N. (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97, 1460-1469.   DOI   ScienceOn
74 Wu, H., Huang, C., Liu, Q. P., Li, Y. Y. and Zong, M. H. (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast trichosporon fermentans. J. Agr. Food Chem. 59, 4606-4613.   DOI   ScienceOn
75 Pfeifer, P. A., Bonn, G. and Bobleter, O. (1984) Influence of biomass degradation products on the fermentation of glucose to ethanol by saccharomyces carlsbergensis W-34. Biotechnol. Lett. 6, 541-546.   DOI
76 Banerjee, N., Bhatnagar, R. and Viswanathan, L. (1981) Inhibition of glycolysis by furfural in saccharomycescerevisiae. Eur. J. Appl. Microbiol. 11, 226-228.   DOI
77 Navarro, A. R. (1994) Effects of furfural on ethanol fermentation by saccharomyces-cerevisiae-mathematicalmodels. Curr. Microbiol. 29, 87-90.   DOI   ScienceOn
78 Liden, G., Taherzadeh, M. J., Gustafsson, L. and Niklasson, C. (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biot. 53, 701-708.   DOI   ScienceOn
79 Sanchez, B. and Bautista, J. (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of saccharomyces- cerevisiae and biomass production from candida- guilliermondii. Enzyme Microb. Technol. 10, 315-318.   DOI   ScienceOn
80 Delgenes, J. P., Moletta, R. and Navarro, J. M. (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, zymomonas mobilis, pichia stipitis, and candida shehatae. Enzyme Microb. Technol. 19, 220-225.   DOI   ScienceOn
81 Watson, N. E., Prior, B. A., Lategan, P. M. and Lussi, M. (1984) Factors in acid-treated bagasse inhibiting ethanol- production from d-xylose by pachyslen-tannophilus. Enzyme Microb. Technol. 6, 451-456.   DOI   ScienceOn
82 Ingram, L. O., Zaldivar, J. and Martinez, A. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24-33.   DOI   ScienceOn
83 Zacchi, G. and Szengyel, Z. (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl. Biochem. Biotechnol. 89, 31-42.   DOI   ScienceOn
84 Chang, K. C., Duh, C. Y., Chen, I. S. and Tsai, I. L. (2003) A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative Formosan Casearia membranacea. Planta Med. 69, 667-672.   DOI   ScienceOn
85 Tsai, I. L., Chen, J. H., Duh, C. Y. and Chen, I. S. (2001) Cytotoxic neolignans and butanolides from machilus obovatifolia. Planta Med. 67, 559-561.   DOI   ScienceOn
86 Lee, C. Y., Sharma, A., Cheong, J. E. and Nelson, J. L. (2009) Synthesis and antioxidant properties of dendritic polyphenols. Bioorg. Med. Chem. Lett. 19, 6326-6330.   DOI   ScienceOn
87 Deng, J. Z., Newman, D. J. and Hecht, S. M. (2000) Use of COMPARE analysis to discover functional analogues of bleomycin. J. Nat. Prod. 63, 1269-1272.   DOI   ScienceOn
88 Stanikunaite, R., Khan, S. I., Trappe, J. M. and Ross, S. A. (2009) Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle elaphomyces granulatus. Phytother. Res. 23, 575-578.   DOI   ScienceOn
89 Farah, M. H. and Samuelsson, G. (1992) Pharmacologically active phenylpropanoids from senra- incana. Planta Med. 58, 14-18.   DOI   ScienceOn
90 Lloret, L., Eibes, G., Lu-Chau, T. A., Moreira, M. T., Feijoo, G. and Lema, J. M. (2010) Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Eng. J. 51, 124-131.   DOI   ScienceOn
91 Setzer, W. N. (2011) Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J. Mol. Model. 17, 1841-1845.   DOI   ScienceOn
92 Lee, C. Y., Sharma, A., Uzarski, R. L., Cheong, J. E., Xu, H., Held, R. A., Upadhaya, S. K. and Nelson, J. L. (2011) Potent antioxidant dendrimers lacking pro-oxidant activity. Free Radic. Biol. Med. 50, 918-925.   DOI   ScienceOn
93 Hahn-Hagerdal, B. and Palmqvist, E. (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol. 74, 25-33.   DOI   ScienceOn
94 Wu, S. L., Chen, J. C., Li, C. C., Lo, H. Y., Ho, T. Y. and Hsiang, C. Y. (2009) Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice. J. Pharmacol. Exp. Ther. 330, 370.   DOI   ScienceOn
95 Wong, Z. J., Chen, K. F. and Li, J. (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresources 5, 1509-1516.
96 Liang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. and Ho, T. Y. (2009) Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor- kappa B signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 75, 151-157.   DOI   ScienceOn
97 Cheng, W. Y., Hsiang, C. Y., Bau, D. T., Chen, J. C., Shen, W. S., Li, C. C., Lo, H. Y., Wu, S. L., Chiang, S. Y. and Ho, T. Y. (2007) Microarray analysis of vanillin-regulated gene expression profile in human hepatocarcinoma cells. Pharmacol. Res. 56, 474-482.   DOI   ScienceOn
98 Lirdprapamongkol, K., Sakurai, H., Kawasaki, N., Choo, M. K., Saitoh, Y., Aozuka, Y., Singhirunnusorn, P., Ruchirawat, S., Svasti, J. and Saiki, I. (2005) Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci. 25, 57-65.   DOI   ScienceOn
99 Pereira, R. S., Mussatto, S. I. and Roberto, I. C. (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J. Ind. Microbiol. Biotechnol. 38, 71-78.   DOI
100 Lee, H., Cho, D. H., Kim, Y. H., Shin, S. J., Kim, S. B., Han, S. O., Lee, J., Kim, S. W. and Park, C. (2011) Tolerance of saccharomyces cerevisiae K35 to lignocellulose- derived inhibitory compounds. Biotechnol. Bioproc. E. 16, 755-760.   DOI   ScienceOn
101 Cortez, D. V. and Roberto, I. C. (2010) Individual and interaction effects of vanillin and syringaldehyde on the xylitol formation by candida guilliermondii. Bioresource Technol. 101, 1858-1865.   DOI   ScienceOn
102 Shaughnessy, D. T., Setzer, R. W. and DeMarini, D. M. (2001) The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in Salmonella TA104 is due to a reduction in mutations at GC but not AT sites. Mutat. Res-Fund. Mol. M. 480, 55-69.   DOI   ScienceOn
103 Lirdprapamongkol, K., Kramb, J. P., Suthiphongchai, T., Surarit, R., Srisomsap, C., Dannhardt, G. and Svasti, J. (2009) Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J. Agr. Food Chem. 57, 3055-3063.   DOI   ScienceOn
104 Kamat, J. P., Ghosh, A. and Devasagayam, T. P. A. (2000) Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem. 209, 47-53.   DOI   ScienceOn
105 Shaughnessy, D. T., Schaaper, R. M., Umbach, D. M. and DeMarini, D. M. (2006) Inhibition of spontaneous mutagenesis by vanillin and cinnamaldehyde in Escherichia coli: Dependence on recombinational repair. Mutat. Res-Fund. Mol. M. 602, 54-64.   DOI   ScienceOn
106 Gustafson, D. L., Franz, H. R., Ueno, A. M., Smith, C. J., Doolittle, D. J. and Waldren, C. A. (2000) Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not (137)Cs gamma- radiation at the CD59 locus in human-hamster hybrid AL cells. Mutagenesis 15, 207.   DOI   ScienceOn
107 King, A. A., Shaughnessy, D. T., Mure, K., Leszczynska, J., Ward, W. O., Umbach, D. M., Xu, Z., Ducharme, D., Taylor, J. A. and DeMarini, D. M. (2007) Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat. Res-Fund. Mol. M. 616, 60-69.   DOI   ScienceOn
108 Lim, E. J., Kang, H. J., Jung, H. J., Song, Y. S., Lim, C. J. and Park, E. H. (2008) Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillin in ICR mice. Biomol. Ther. 16, 132-136.   DOI   ScienceOn
109 Nomeir, A. A., Silveira, D. M., Mccomish, M. F. and Chadwick, M. (1992) Comparative metabolism and disposition of furfural and furfuryl alcohol in rats. Drug Metab. Dispos. 20, 198-204.
110 Hessov, I. (1975) Toxicity of 5-hydroxymethylfurfural and furfural to daphnia magna. Acta Pharmacol. Toxicol. (Copenh). 37, 94-96.
111 Janzowski, C., Glaab, V., Samimi, E., Schlatter, J. and Eisenbrand, G. (2000) 5-hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 38, 801-809.   DOI   ScienceOn
112 Pearson, D. A., Tan, C. H., German, J. B., Davis, P. A. and Gershwin, M. E. (1999) Apple juice inhibits human low density lipoprotein oxidation. Life Sci. 64, 1913-1920.   DOI   ScienceOn
113 Abdulmalik, O., Safo, M. K., Chen, Q., Yang, J., Brugnara, C., Ohene-Frempong, K., Abraham, D. J. and Asakura, T. (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol. 128, 552-561.   DOI   ScienceOn
114 Feng, X., Lu, J., Xin, H., Zhang, L., Wang, Y. and Tang, K. (2011) Anti-arthritic active fraction of capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi 131, 423-429.   DOI   ScienceOn