Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.2.168

Catabolic Pathway of Lignin Derived-Aromatic Compounds by Whole Cell of Phanerochaete chrysosporium (ATCC 20696) With Reducing Agent  

Hong, Chang-Young (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science)
Kim, Seon-Hong (Department of Forest Sciences, Seoul National University)
Park, Se-Yeong (Department of Forest Sciences, Seoul National University)
Choi, June-Ho (Department of Forest Sciences, Seoul National University)
Cho, Seong-Min (Department of Forest Sciences, Seoul National University)
Kim, Myungkil (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science)
Choi, In-Gyu (Department of Forest Sciences, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.2, 2017 , pp. 168-181 More about this Journal
Abstract
Whole cell of Phanerochaete chrysosporium with reducing agent was applied to verify the degradation mechanism of aromatic compounds derived from lignin precisely. Unlike the free-reducing agent experiment, various degraded products of aromatic compounds were detected under the fungal treatment. Our results suggested that demethoxylation, $C_{\alpha}$ oxidation and ring cleavage of aromatic compounds occurred under the catabolic system of P. chrysosporium. After that, degraded products stimulated the primary metabolism of fungus, so succinic acid was ultimately main degradation product of lignin derived-aromatic compounds. Especially, hydroquinone was detected as final intermediate in the degradation of aromatics and production of succinic acid. In conclusions, P. chrysosporium has an unique catabolic metabolism related to the production of succinic acid from lignin derived-aromatic compounds, which was meaningful in terms of lignin valorization.
Keywords
catabolic metabolism; succinic acid; lignin-derived aromatic compounds; ring cleavage; Phanerochaete chrysosporium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lipscomb, J.D. 2008. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Current opinion in structural biology 18(6): 644-649.   DOI
2 Lopretti, M., Cabella, D., Morais, J., Rodrigues, A. 1998. Demethoxylation of lignin-model compounds with enzyme extracts from Gloeophilum trabeum. Process biochemistry 33(6): 657-661.   DOI
3 Martinez, D., Larrondo, L.F., Putnam, N., Gelpke, M.D.S., Huang, K., Chapman, J., Helfenbein, K.G., Ramaiya, P., Detter, J.C., Larimer, F. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature biotechnology 22(6): 695-700.   DOI
4 Matsuzaki, F., Shimizu, M., Wariishi, H. 2008. Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. Journal of proteome research 7(6): 2342-2350.   DOI
5 Miyauchi, K., Adachi, Y., Nagata, Y., Takagi, M. 1999. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of ${\gamma}$-hexachlorocyclohexane in Sphingomonas paucimobilis. Journal of bacteriology 181(21): 6712-6719.
6 Munir, E., Yoon, J.-J., Tokimatsu, T., Hattori, T., Shimada, M. 2001a. New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. Journal of wood science 47(5): 368-373.   DOI
7 Quideau, S., Ralph, J. 1992. Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. Journal of agricultural and food chemistry 40(7): 1108-1110.   DOI
8 Ravalason, H., Jan, G., Mollé, D., Pasco, M., Coutinho, P.M., Lapierre, C., Pollet, B., Bertaud, F., Petit-Conil, M., Grisel, S. 2008. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Applied microbiology and biotechnology 80(4): 719-733.   DOI
9 Shimizu, M., Yuda, N., Nakamura, T., Tanaka, H., Wariishi, H. 2005. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5(15): 3919-3931.   DOI
10 Tien, M., Kirk, T.K. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science(Washington) 221(4611): 661-662.   DOI
11 Umezawa, T., Nakatsubo, F., Higuchi, T. 1982. Lignin degradation by Phanerochaete chrysosporium: Metabolism of a phenolic phenylcoumaran substructure model compound. Archives of microbiology 131(2): 124-128.   DOI
12 Warrilow, A., Ugochukwu, C., Lamb, D., Kelly, D., Kelly, S. 2008. Expression and characterization of CYP51, the ancient sterol 14-demethylase activity for cytochromes P450 (CYP), in the white-rot fungus Phanerochaete chrysosporium. Lipids 43(12): 1143-1153.   DOI
13 Weinstein, D.A., Krisnangkura, K., Mayfield, M.B., Gold, M.H. 1980. Metabolism of radiolabeled ${\beta}$-guaiacyl ether-linked lignin dimeric compounds by Phanerochaete chrysosporium. Applied and environmental microbiology 39(3): 535-540.
14 Wong, L.-L. 1998. Cytochrome P450 monooxygenases. Current opinion in chemical biology 2(2): 263-268.   DOI
15 Yadav, J.S., Soellner, M.B., Loper, J.C., Mishra, P.K. 2003. Tandem cytochrome P450 monooxygenase genes and splice variants in the white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis, and regulation of differential expression. Fungal genetics and biology 38(1): 10-21.   DOI
16 Adav, S.S., Ravindran, A., Sze, S.K. 2012. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. Journal of proteomics 75(5): 1493-1504.   DOI
17 Ander, P., Eriksson, K.-E. 1985. Methanol formation during lignin degradation by Phanerochaete chrysosporium. Applied microbiology and biotechnology 21(1-2): 96-102.   DOI
18 Ander, P., Eriksson, K.-E., Yu, H.-s. 1983. Vanillic acid metabolism by Sporotrichum pulverulentum: evidence for demethoxylation before ring-cleavage. Archives of microbiology 136(1): 1-6.   DOI
19 Ander, P., Eriksson, M.E., Eriksson, K.E. 1985. Methanol production from lignin-related substances by Phanerochaete chrysosporium. Physiologia Plantarum 65(3): 317-321.   DOI
20 Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachua, D., & Vardon, D. R. 2016. Opportunities and challenges in biological lignin valorization. Current opinion in biotechnology 42: 40-53.   DOI
21 Enoki, A., Goldsby, G.P., Gold, M.H. 1981. ${\beta}$-Ether cleavage of the lignin model compound 4-ethoxy-3-methoxyphenylglycerol-${\beta}$-guaiacyl ether and derivatives by Phanerochaete chrysosporium. Archives of Microbiology 129(2):141-145.   DOI
22 Glenn, J.K., Morgan, M.A., Mayfield, M.B., Kuwahara, M., Gold, M.H. 1983. An extracellular $H_2O_2$-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 114(3): 1077-1083.   DOI
23 Gunsch, C.K., Cheng, Q., Kinney, K.A., Szaniszlo, P.J., Whitman, C.P. 2005. Identification of a homogentisate- 1, 2-dioxygenase gene in the fungus Exophiala lecanii-corni: analysis and implications. Applied microbiology and biotechnology 68(3): 405-411.   DOI
24 Harayama, S., Kok, M., Neidle, E. 1992. Functional and evolutionary relationships among diverse oxygenases. Annual Reviews in Microbiology 46(1): 565-601.   DOI
25 Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Science and Technology 24(1): 23-63.   DOI
26 Hirosue, S., Tazaki, M., Hiratsuka, N., Yanai, S., Kabumoto, H., Shinkyo, R., Arisawa, A., Sakaki, T., Tsunekawa, H., Johdo, O. 2011. Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochemical and biophysical research communications 407(1): 118-123.   DOI
27 Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial technology 30(4): 454-466.   DOI
28 Hong, C.Y. 2016. Biomodification of Lignin Compounds by Abortiporus biennis and Phanerochaete chrysosporium and Investigation of Related Enzymes by Transcriptomic Analysis. Ph.D. Thesis, Seoul National University, Seoul, Korea.
29 Hong, C.Y., Park, S.Y., Kim, S.H., Lee, S.Y., Ryu, S. H., Choi, I.G. 2016. Biomodification of ethanol organolsolv lignin by Abortiporus biennis and its structural change by addition of reducing agent. Journal of Korean Wood Science and Technology 44(1): 124-134.   DOI
30 Kelly, S.L., Lamb, D.C., Jackson, C.J., Warrilow, A.G., Kelly, D.E. 2003. The biodiversity of microbial cytochromes P450. Advances in microbial physiology 47: 131-186.
31 Kersten, P.J., Tien, M., Kalyanaraman, B., Kirk, T.K. 1985. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. Journal of Biological Chemistry 260(5): 2609-2612.
32 Keyser, P., Kirk, T., Zeikus, J. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of bacteriology 135(3): 790-797.
33 Kinne, M., Poraj-Kobielska, M., Ralph, S.A., Ullrich, R., Hofrichter, M., Hammel, K.E. 2009. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. Journal of biological chemistry 284(43): 29343-29349.   DOI
34 Kirk, T.K., Farrell, R.L. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annual Reviews in Microbiology 41(1): 465-501.   DOI
35 Kirk, T.K., Nakatsubo, F. 1983. Chemical mechanism of an important cleavage reaction in the fungal degradation of lignin. Biochimica et Biophysica Acta (BBA)-General Subjects 756(3):376-384.   DOI