• Title/Summary/Keyword: light-weight materials

Search Result 697, Processing Time 0.041 seconds

Effects of Photoperiod Manipulation on Growth Performance and Hematological Responses of Juvenile Caspian Roach Rutilus rutilus caspicus

  • Shahkar, Erfan;Kim, Dae-Jung;Mohseni, Mahmoud;Khara, Hossein;Yun, Hyeonho;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • A 8-week trial was conducted to evaluate the effects of photoperiod manipulation on the growth performance and hematological parameters of juvenile Caspian roach, Rutilus rutilus caspicus (average weight $1.46{\pm}0.12g$ mean${\pm}$SD) reared under five photoperiods (24 h Light, 24L; 18 h Light & 6 h Dark, 18L:6D; 12 h Light & 12 h Dark, 12L:12D; 6 h Light & 18 h Dark, 6L:18D; 24 h Dark, 24D) with constant light intensity 1,500 lx on the water surface. Triplicate of 20 fish were allocated into each of 15 fiberglass tanks of 50 L capacity and they were fed three times per day with the commercial feed (SFK, Co., Sari - Iran) contains 50.0% protein and 10.5% lipid. At the end of experimental period, final body weight, weight gain and specific growth rates of fish exposed to 24L were significantly higher than those of fish exposed to 12L:12D, 6L:18D and 24D (P < 0.05). Red blood cell and hemoglobin of fish exposed to 24L were significantly higher than those of fish exposed to 24D. No significant difference observed in hematocrit, white blood cell and plasma glucose among the different treatments groups. Therefore, these results demonstrated that the growth performance of juvenile Caspian roach can be significantly stimulated by using 24L and 18L:6D photoperiods without any measurable significant stress response such as plasma glucose concentration.

A Study on the Dynamic Elastic Modulus of the materials for Floor Impact Sound Reduction (바닥 충격음 저감용 소재의 동탄성 계수에 관한 연구)

  • Park, Choon-Keun;Lee, Jong-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.930-935
    • /
    • 2005
  • In order to synthesis of the materials and modulus for floor impact sound reduction, we investigated effect on dynamic elastic modulus of floor impact sound reduction materials and module made by inorganic porous materials, EVA chips and so on. We find correlation property between dynamic elastic modulus and light-weight impact noise. And we measured the dynamic elastic modulus of materials and module for floor impact sound reduction. And we predicted reduction efficiency on floor Impact Noise of those. The dynamic elastic modulus is reduced by increase of filler contents and filler species. When the materials for floor impact sound reduction is consisted of l5wt% EVA Chip and l5wt% inorganic porous materials, its dynamic elastic material is the lowest. And when the module is consisted of PE (upper side), PS embossing board(lower side) and the materials for floor impact sound reduction(middle), its dynamic elastic material is the lowest.

  • PDF

Construction of Smart Soil Using In-Situ clay soil (현장 발생토를 이용한 경량고화토(Smart Soil)의 시공사례)

  • Jung, Gwak-Soo;Lim, Yoon-Gil;Jeong, Woo-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.473-485
    • /
    • 2010
  • Lightweight materials using in-situ clay soil contain large amounts of fine grain and cement for increasing the strength, lighter weight to increase liquidity for the foam and the bulk of the material is conducted by the water. Domestic cases, Light weight soil to improve cementation and lightness using demountable mixing device is defined Smartsoil. Typical features are their self-leveling, self-compaction, folwability. By adjusting the amount of cement, the strength can be controlled artificially. And re-excavation is easy. In this paper, pre-loading method using the road due to the displacement of adjacent structures under construction as an alternative SmartSoil introduces the design and construction practices. Is to discuss and improve.

  • PDF

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Development of Lightweight Plastic Formwork through Efficiency(Load) Test (경량 플라스틱 거푸집 개발 및 성능(하중재하) 시험)

  • Kang, Sin Hun;Lee, Changsu;Kwon, Woobin;Ahn, Heejae;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.10-11
    • /
    • 2020
  • Currently, the most used forms, such as euro form and aluminum form, has many problems. There are issues with noise of construction site because of existing forms' material and issues with safety because of heavy weight. To solve these problems, there are many researches on using plastic and composite materials on the formwork. However, plastic has lower tensile strength than the steel and aluminum and composite materials are expensive. Therefore, constructors are avoid to use the forms with new materials. The purpose of this study is to develop light-weight plastic form to solve these existing problems by using ABS with optimized design. To verify, the study measured the amount of deflection from developed form through a load test. The test result showed a deflection of 1.15mm when 1.4ton was loaded in the middle of form. The result of the study verified that the usage of ABS and optimized design effectively reduced the weight and noise. Also, it's performance was verified through the load test.

  • PDF

Physical Properties of Light Weight Foamed Glass Using Waste Glass Powder and Fly Ash (폐유리분말과 플라이애시를 사용한 경량 발포소재의 물리적 특성)

  • Song, Hun;Shin, Hyeon-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • Building insulation materials use for the purpose of energy saving. Insulation materials can be classified inorganic and organic insulation materials. Inorganic insulation is used for fire resistive performance parts and organic insulation is used for thermal performance parts. Meanwhile, organic insulation is due to toxic gas emission in fire. Inorganic insulation is too heavy and low thermal performance than organic materials. This study is focused on evaluation of the physical properties of inorganic foam material using industrial by-products such as waste glass powder and fly ash. From the test result, inorganic foam materials for the applicability of fire-resistance and insulation light-weight materials.

Kiln for Production of Light Weight Aggregate from Coal Fly Ash (Coal Fly Ash로부터 경량 골재 생산을 위한 소성장치)

  • Choi, Young-Yoon;Nam, Chul-Woo;Kim, Byoung-Gyu;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.61-67
    • /
    • 2007
  • In viewpoints of environmental and resource conservation, it is desirable to utilize fly ash generated from domestic coal power stations as light constructive material. Furthermore, the demand of light constructive materials has been increased as many building tend to become highly multistory buildings. In demonstration of converting fly ash to light constructive materials, the Dwight-Lloyd kiln of which the operation is relatively easy and the reliability very high has been informed to be only commercialized plant over the world. In this review, Dwight-Lloyd kiln plant operated at Oomura coal power station in Japan is explained. Circular grate kiln, Shaft kiln, Rotary kiln plants that are under developed is also introduced.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

A study of weld monitoring using light emission in Aluminum 6K31 laser welding (알루미늄 6K31의 레이저 용접에서 Light Emission을 이용한 용접부 모니터링에 관한 연구)

  • 박영환;이세헌;박현성;신현일
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.52-54
    • /
    • 2003
  • In automotive industry, light weight vehicle is one of issues because of air pollution. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Welding aluminum using laser has some advantages good weld quality and high productivity. In this study, light emission which is generated in aluminum 6k21 welding with laser is measured using photodiodes. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed.

  • PDF

Manufacture of light-weight machine tool structures using composite materials (복합재료를 이용한 경량 공작기계 구조물 제작에 관한 연구)

  • Suh, Jung-Do;Lee, Dai-Gil;Kim, Hak-Sung;Kim, Jong-Min;Choi, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.189-196
    • /
    • 2001
  • Machine tools of high-speed and high-precision are required for various fields of industry such as semiconductor, automobile, mold fabrication and so on. Light-weight machine tool structure is essential for reduction of production time through rapid transportation. Also, high damping capacity of the structure is required to obtain precise products without vibration during manufacturing. Composite materials have high potential for machine tool structures due to its high specific stiffness and good damping characteristics. In this study, the design and the manufacture of a hybrid machine tool structure using composite materials was attempted and the damping capacity was investigated experimentally.

  • PDF