Rhodopsin, a dim-light receptor, is a model system for the study of G protein-coupled receptors that transduce extracellular signals into cells. To study the molecular mechanisms of visual systems in fish, the rod opsin gene of olive flounder Paralichthys olivaceus was characterized. The full-length P. olivaceus opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. A comparison of clones obtained from both methods indicated that the olive flounder rod opsin gene lacks introns. Sequence analysis of the opsin gene indicated that it contains a 1,056-bp open reading frame encoding 352 amino acids. The deduced amino acid sequence contains features of typical rod opsins, such as sites for Schiff's base formation (K296) and its counterion (E113), disulfide formation (C110 and C187), and palmitoylation (C322 and C323). An opsin sequence alignment showed the highest similarity between P. olivaceus and Solea solea (95.1%), followed by Hippoglossus hippoglossus (94.5%). An opsin phylogenetic tree revealed a close relationship between olive flounder and teleost rod opsins.
Ayim, Benjamin Yaw;Kim, Young-Tae;Das, Kallol;Kang, In-Kyu;Lee, Seung-Yeol;Jung, Hee-Young
The Korean Journal of Mycology
/
v.47
no.3
/
pp.181-186
/
2019
A designated fungal isolate, KNU-US-1802E was isolated from the soil in Uiseong, Korea. To identify characteristics of the isolate, it was cultured on PDA media for 6 days at $35^{\circ}C$. Colonies on PDA are flat, light gray, dense, with entire margins; reverse dark gray to black, with white margins. Aerial mycelia were smooth-walled, hyaline and 40~42 mm diameter after 6 days at $35^{\circ}C$. Conidia were hyaline, one-celled, ellipsoidal to fusiform, forming long chains with average length ${\times}$ width of $5.0{\pm}0.3{\times}2.9{\pm}0.2{\mu}m$. Molecular analysis indicates that the internal transcribed spacer (ITS) region and partial beta-tubulin (tub2) gene sequence showed 100% and 99% similarities, respectively with Acrophialophora ellipsoidea CGMCC 3.15255 collected from China. Phylogenetic analysis by the neighbor-joining (NJ) method shows that the KNU-US-1802E was clustered with A. ellipsoidea CGMCC 3.15255 in a phylogenetic tree constructed using the concatenated sequences of ITS region and tub2 gene sequences with a high bootstrap value. Based on these findings, the isolate KNU-US-1802E was identified as Acrophialophora ellipsoidea, and this is the first report of this isolate in Korea.
Microcotyle sebastis is a gill monogenean ectoparasite that causes serious problems in the mariculture of the Korean rockfish, Sebastes schlegelii. In this study, we isolated the parasite from fish farms along the coasts of Tongyeong, South Korea in 2016, and characterized its infection, morphology and molecular phylogeny. The prevalence of M. sebastis infection during the study period ranged from 46.7% to 96.7%, and the mean intensity was 2.3 to 31.4 ind./fish, indicating that the fish was constantly exposed to parasitic infections throughout the year. Morphological observations under light and scanning electron microscopes of the M. sebastis isolates in this study showed the typical characteristics of the anterior prohaptor and posterior opisthaptor of monogenean parasites. In phylogenetic trees reconstructed using the nuclear 28S ribosomal RNA gene and the mitochondrial cytochrome c oxidase I gene (cox1), they consistently clustered together with their congeneric species, and showed the closest phylogenetic relationships to M. caudata and M. kasago in the cox1 tree.
Das, Kallol;Kim, Yeong-Hwan;Yoo, Jingi;Ten, Leonid N.;Kang, Sang-Jae;Kang, In-Kyu;Lee, Seung-Yeol;Jung, Hee-Young
The Korean Journal of Mycology
/
v.48
no.4
/
pp.511-518
/
2020
This study was conducted to isolate and identify the fungal pathogen caused unreported post-harvest disease on apples (cv. Fuji) fruit in Korea. The disease symptoms on apples appeared as irregular, light to dark brown, slightly sunken spots. The three fungal strains were isolated from infected tissues of apple fruits and their cultural and morphological characteristics were completely consistent with those of Plenodomus collinsoniae. The phylogenetic analysis using the internal transcribed spacer (ITS) regions, beta-tubulin (TUB), and the second largest subunit of RNA polymerase II (RPB2) sequences revealed the closest relationship of the isolates with Plenodomus collinsoniae at the species level. The pathogenicity test showed the same dark brown spots on Fuji apple cultivar. Therefore, P. collinsoniae is a newly reported fungal agent causing post-harvest disease on apples in Korea.
Babar, Zaheer Ud Din;UlAmin, Riaz;Sarwar, Muhammad Nabeel;Jabeen, Sidra;Abdullah, Muhammad
International Journal of Computer Science & Network Security
/
v.22
no.5
/
pp.330-334
/
2022
In light of the decreasing crop production and shortage of food across the world, one of the crucial criteria of agriculture nowadays is selecting the right crop for the right piece of land at the right time. First problem is that How Farmers can predict the right crop for cultivation because famers have no knowledge about prediction of crop. Second problem is that which algorithm is best that provide the maximum accuracy for crop prediction. Therefore, in this research Author proposed a method that would help to select the most suitable crop(s) for a specific land based on the analysis of the affecting parameters (Temperature, Humidity, Soil Moisture) using machine learning. In this work, the author implemented Random Forest Classifier, Support Vector Machine, k-Nearest Neighbor, and Decision Tree for crop selection. The author trained these algorithms with the training dataset and later these algorithms were tested with the test dataset. The author compared the performances of all the tested methods to arrive at the best outcome. In this way best algorithm from the mention above is selected for crop prediction.
The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.
In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.
Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
Geomechanics and Engineering
/
v.37
no.6
/
pp.539-554
/
2024
This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.
Jung, Dae Ho;Shin, Jong Hwa;Cho, Young Yeol;Son, Jung Eek
Journal of Bio-Environment Control
/
v.24
no.3
/
pp.161-166
/
2015
To determine the adequate levels of light intensity and $CO_2$ concentration for mango grown in greenhouses, quantitative measurements of photosynthetic rates at various leaf positions in the tree are required. The objective of this study was to develop two-variable leaf photosynthetic models of Irwin mango (Mangifera indica L. cv. Irwin) using light intensity and $CO_2$ concentration at different leaf positions. Leaf photosynthetic rates at different positions (top, middle, and bottom) were measured by a leaf photosynthesis analyzer at light intensities (0, 50, 100, 200, 300, 400, 600, and $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) with $CO_2$ concentrations (100, 400, 800, 1200, and $1600{\mu}mol{\cdot}mol^{-1}$). The two-variable model consisted of the two leaf photosynthetic models expressed as negative exponential functions for light intensity and $CO_2$ concentrations, respectively. The photosynthetic rates of top leaves were saturated at a light intensity of $400{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$, while those of middle and bottom leaves saturated at $200{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$. The leaf photosynthetic rates did not reach the saturation point at a $CO_2$ concentration of $1600imolmol^{-1}$. In validation of the model, the estimated photosynthetic rates at top and bottom leaves showed better agreements with the measured ones than the middle leaves. It is expected that the optimal conditions of light intensity and $CO_2$ concentration can be determined for maximizing photosynthetic rates of Irwin mango grown in greenhouses by using the two-variable model.
Journal of the Korean Institute of Landscape Architecture
/
v.41
no.3
/
pp.22-30
/
2013
This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.