Browse > Article
http://dx.doi.org/10.5657/fas.2007.10.1.008

Molecular Cloning and Characterization of the Rod Opsin Gene in Olive Flounder Paralichthys olivaceus  

Kim, Jong-Myoung (Department of Aquaculture, Pukyong National University)
Kim, Sung-Wan (Department of Aquaculture, Pukyong National University)
Kim, Sung-Koo (Department of Biotechnology and Bioengineering, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.10, no.1, 2007 , pp. 8-15 More about this Journal
Abstract
Rhodopsin, a dim-light receptor, is a model system for the study of G protein-coupled receptors that transduce extracellular signals into cells. To study the molecular mechanisms of visual systems in fish, the rod opsin gene of olive flounder Paralichthys olivaceus was characterized. The full-length P. olivaceus opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. A comparison of clones obtained from both methods indicated that the olive flounder rod opsin gene lacks introns. Sequence analysis of the opsin gene indicated that it contains a 1,056-bp open reading frame encoding 352 amino acids. The deduced amino acid sequence contains features of typical rod opsins, such as sites for Schiff's base formation (K296) and its counterion (E113), disulfide formation (C110 and C187), and palmitoylation (C322 and C323). An opsin sequence alignment showed the highest similarity between P. olivaceus and Solea solea (95.1%), followed by Hippoglossus hippoglossus (94.5%). An opsin phylogenetic tree revealed a close relationship between olive flounder and teleost rod opsins.
Keywords
Paralichthys olivaceus; Olive flounder; Rod opsin; G protein-coupled receptor (GPCR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Inoue, H., H. Nojima and H. Okayama. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-28   DOI   ScienceOn
2 Karnik, S.S., T.P. Sakmar, H.B. Chen and H.G. Khorana. 1988. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 85, 8459-8463
3 Kaushal, S., K. Ridge and H.G. Khorana. 1994. Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA, 91, 4024-4028
4 Khorana, H.G. 2000. Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin. J. Biomol. Struct. Dyn., 11, 1-6
5 Kim, J.M., J. Hwa, P. Garriga, P.J. Reeves, U.L. Raj-Bhandary and H.G. Khorana. 2005. Light-driven activation of beta-2 adrenergic receptor signaling by a chimeric rhodopsin containing the beta-2 adrenergic receptor cytoplasmic loops. Biochemistry, 44, 2284-2292   DOI   ScienceOn
6 Minamoto, T. and I. Shimizu. 2003. Molecular cloning and characterization of rhodopsin in a teleost (Plecoglossus altivelis, Osmeridae). Compo Biochem. PhysioI., 34, 559-570
7 Ovchinnikov, Y.A., N.G. Abdulaev and A.S. Bogachuk. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett., 230, 1-5   DOI   ScienceOn
8 Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progresssive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-468   DOI
9 O'Brien, J., H. Ripps and M.R. Al-Ubaidi. 1997. Molecular cloning of a rod opsin cDNA from the skate retina. Gene, 193, 141-150   DOI   ScienceOn
10 Ohguro, H., R.S. Johnson, L.H. Ericsson, K.A. Walsh and K. Palczewski. 1994. Control of rhodopsin multiple phosphorylation. Biochemistry, 33, 1023-1028   DOI   ScienceOn
11 Hope, A.J., J.C. Partridge and P.K. Hayes. 1998. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc. Roy. Soc. Lond. B265, 869-874
12 Helvik, J.V., O. Drivenes, T.H. Naess, A. Fjose and H.C. Seo. 2001. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci. 18, 767-780   DOI
13 Yokoyama, S. 1995. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol. BioI. Evol., 12, 53-61   DOI   ScienceOn
14 Bellingham, J., A.G. Morris and D.M. Hunt. 1998. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. J. Exp. BioI. 201, 2299-2306
15 Franke, R.R., B. Konig, T.P. Sakmar, H.G. Khorana and K.P. Hofmann. 1990. Rhodopsin mutants that bind but fail to activate transducin. Science, 250, 123-125
16 Imai, H., D. Kojima, T. Oura, S. Tachibanaki, A. Terakita and Y. Shichida. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. USA, 94, 2322-2326
17 Khorana, H.G., P.J. Reeves and J.M. Kim. 2002. Structure and mechanism in G protein-coupled receptors. Pharmaceut. Rev., 9, 287-294
18 Matsumoto, Y., Y.S. Fukamachi, H. Mitani and S. Kawamura. 2006. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene, 371, 268-278   DOI   ScienceOn
19 Archer, S., A.J. Hope and J.C. Partridge. 1995. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc. Roy. Soc. Lond. B262, 289-295
20 Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor La-boratory Press, Plainview, NY
21 Yokoyama, S. and F.B. Radlwimmer. 1998. The 'Five Sites' rule and the evolution of red and green color vision in mammals. Mol. Biol. Evol., 15, 560-567   DOI   ScienceOn
22 Hunt, D.M., K.S. Dulai, J.C. Partridge, P. Cottrill and J.K. Bowmaker. 2001. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J. Exp. BioI. 20, 4, 3333-3344
23 Sakmar, T.P., R.R. Franke and H.G. Khorana. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA, 86, 8309-8313
24 Philp, A.R., J. Bellingham, J.M. Garcia-Fernandez and R.G. Forster. 2000. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett., 468, 181-188   DOI   ScienceOn
25 Wang, J. K., J. H. McDowell and P.A. Hargrave. 1980. Site of attachment of 11-cis-retinal in bovine rhodopsin. Mol. BioI. Evol., 12, 53-61
26 Nakayama, T.A. and H.G. Khorana. 1991. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. BioI. Chem., 266, 4269-4275
27 Oprian, D.D., R.S. Molday, R.J. Kaufman and H.G. Khorana. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA, 84, 8874-8878