DOI QR코드

DOI QR Code

Development of A Two-Variable Spatial Leaf Photosynthetic Model of Irwin Mango Grown in Greenhouse

온실재배 어윈 망고의 위치 별 2변수 엽 광합성 모델 개발

  • Jung, Dae Ho (Department of Plant Science and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Shin, Jong Hwa (Department of Horticulture and Breeding, Andong National University) ;
  • Cho, Young Yeol (Major of Horticultural Science, Jeju National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute of Agriculture and Life Science, Seoul National University)
  • 정대호 (서울대 식물생산과학부 및 농업생명과학연구원) ;
  • 신종화 (안동대 원예육종학과) ;
  • 조영열 (제주대 원예환경전공) ;
  • 손정익 (서울대 식물생산과학부 및 농업생명과학연구원)
  • Received : 2015.06.15
  • Accepted : 2015.08.11
  • Published : 2015.09.30

Abstract

To determine the adequate levels of light intensity and $CO_2$ concentration for mango grown in greenhouses, quantitative measurements of photosynthetic rates at various leaf positions in the tree are required. The objective of this study was to develop two-variable leaf photosynthetic models of Irwin mango (Mangifera indica L. cv. Irwin) using light intensity and $CO_2$ concentration at different leaf positions. Leaf photosynthetic rates at different positions (top, middle, and bottom) were measured by a leaf photosynthesis analyzer at light intensities (0, 50, 100, 200, 300, 400, 600, and $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) with $CO_2$ concentrations (100, 400, 800, 1200, and $1600{\mu}mol{\cdot}mol^{-1}$). The two-variable model consisted of the two leaf photosynthetic models expressed as negative exponential functions for light intensity and $CO_2$ concentrations, respectively. The photosynthetic rates of top leaves were saturated at a light intensity of $400{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$, while those of middle and bottom leaves saturated at $200{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$. The leaf photosynthetic rates did not reach the saturation point at a $CO_2$ concentration of $1600imolmol^{-1}$. In validation of the model, the estimated photosynthetic rates at top and bottom leaves showed better agreements with the measured ones than the middle leaves. It is expected that the optimal conditions of light intensity and $CO_2$ concentration can be determined for maximizing photosynthetic rates of Irwin mango grown in greenhouses by using the two-variable model.

가온 온실에서 재배하는 망고의 생육에 적합한 광도와 $CO_2$ 농도를 결정하기 위하여 위치 별 엽의 광합성속도를 정량적으로 측정할 필요가 있다. 본 연구에서는 어윈망고(Mangifera indica L. cv. Irwin)의 위치 별 엽 광합성속도를 측정하여 광도와 $CO_2$ 농도의 2변수 엽 광합성모델을 개발하는 것을 목적으로 하였다. 상단부, 중단부, 하단부 엽의 위치에 따른 엽 광합성속도 측정은 LI-6400 광합성 분석 장치를 사용하였다. 광도 0, 50, 100, 200, 300, 400, 600, $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $CO_2$ 농도 100, 400, 800, 1200, $1600{\mu}mol{\cdot}mol^{-1}$의 조합 조건에 해당하는 엽 광합성속도를 위치 별로 측정하였다. 광도와 $CO_2$ 농도에 대하여 Negative exponential 함수로 표현된 엽 광합성속도 모델을 곱하여 2변수 엽 광합성 모델을 구축하였다. 상단부 엽의 경우 엽 광합성속도는 광도 $400{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$, 중단부와 하단부 엽은 $200{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$에서 포화되는 것으로 나타났다. $CO_2$ 농도 $1600mol{\cdot}mol^{-1}$에서도 엽 광합성속도가 증가하여 포화되지 않는 특성을 보였다. 2변수 엽 광합성 모델의 검증 결과, 중단부에 비하여 상단부와 하단부엽에 대해서 높은 신뢰도를 갖는 것으로 나타났다. 추후, 위치 별 2변수 엽 광합성 모델을 활용하여 어윈 망고의 온실 재배 시 광합성을 극대화 할 수 있는 광도와 $CO_2$ 농도 조건을 결정할 수 있을 것이다.

Keywords

References

  1. Akinaga, T., and R. Hasbullah. 2002. Mango production using plastic greenhouse in Okinawa. Acta Horticulturae 575:745-749.
  2. An, M.R., Y.S. Keum, and S.K. Lee. 2015. Comparative analysis of volatile flavor compounds in Taiwan apple mango and Philippines carabao mango. Korean Journal of Food Science and Technology 47:191-197. https://doi.org/10.9721/KJFST.2015.47.2.191
  3. Baker, N.R., and M. McKiernan. 1988. Modifications to the photosynthetic apparatus of higher plants in response to changes in the light environment. Biological Journal of the Linnean Society 34:193-203. https://doi.org/10.1111/j.1095-8312.1988.tb01958.x
  4. Del Pozo, A. P. Perez, D. Gutierrez, A. Alonso, R. Morcuende, and R. Martinez-Carrasco. 2007. Gas exchange acclimation to elevated $CO_2$ in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany 59:371-380. https://doi.org/10.1016/j.envexpbot.2006.04.009
  5. Evans, J.R. 1993. Photosynthetic acclimation and nitrogen partitioning within a Lucerne canopy. I. Canopy characteristics. Australian Journal of Plant Physiology 20:55-67. https://doi.org/10.1071/PP9930055
  6. Honsho, C., M. Inada, K. Yuji, M. Tojiki, S. Kurogi, S. Kanzaki, and T. Tetsumura. 2012. Efficiency of hybrid formation by open-pollination of two cultivars in a closed plastic house and the effect of the male parent on fruit characteristics in mango. Journal of the Japanese Society for Horticultural Science 81:27-34. https://doi.org/10.2503/jjshs1.81.27
  7. Jones, J.W., E. Dayan, L.H. Allen, H. van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (TOMGRO). Transactions of the American Society of Agricultural Engineers 34:663-672. https://doi.org/10.13031/2013.31715
  8. Lee, J.H., Y.B. Lee, J.K. Kwon, N.J. Kang, H.J. Kim, Y.H. Choi, J.M. Park, and H.C. Rhee. 2006. Effect of greenhouse cooling and transplant quality using geothermal heat pump system. Journal of Bio-Environmental Control 15:211-216.
  9. Naef, R., A. Velluz, and A. Jaquier. 2006. The perfume of carabao mangoes (Mangifera indica L.): Identification of uncommon unsaturated fatty acid esters in the SPME of the intact fruit. European Food Research and Technology 222:554-558. https://doi.org/10.1007/s00217-005-0132-9
  10. Osborne, C.P., J. LaRoche, R.L. Garcia, B.A. Kimball, G.W. Wall, P.J. Pinter, Jr., R.L. LaMorte, G.R. Hendrey, and S.P. Long. 1998. Does leaf position within a canopy affect acclimation of photosynthesis to elevated $CO_2$? Plant Physiology 117:1037-1045. https://doi.org/10.1104/pp.117.3.1037
  11. Park, I.G., H.J. Yoon, M.A. Kim, K.Y. Lee, H.C. Park, and S.H. Kim. 2014. Effect on pollinating activities on mango flower by bumblebee (Bombus terrestris), honeybee (Apis mellifera) and oriental latrine fly (Chrysomyia megacephala) in green house. Journal of Apiculture 29:235-243.
  12. Ryou, Y.S., Y.K. Kang, J.K. Jang, Y.H. Kim, J.G. Kim, and G.C. Kang. 2012. Heat exchanger design of a heat pump system using the heated effluent of thermal power generation plant as a heat source for greenhouse heating. Journal of Bio-Environment Control 21:372-378. https://doi.org/10.12791/KSBEC.2012.21.4.372
  13. Schaffer, B., A.W. Whiley, C. Searle, and R.J. Nissen. 1997. Leaf gas exchange, dry matter partitioning, and mineral element concentrations in mangos as influenced by elevated atmospheric carbon dioxide and root restriction. Journal of the American Society for Horticultural Science. 122:849-855.
  14. Sinoquet, H., S. Thanisawanyangkura, H. Mabrouk, and P. Kasemsap. 1998. Characterization of the light environment in canopies using 3D digitising and image processing. Annals of Botany 82:203-212. https://doi.org/10.1006/anbo.1998.0665
  15. Thornley, J.H.M. 2002. Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis. Annals of Botany 89:451-458. https://doi.org/10.1093/aob/mcf071
  16. Whiley, A.W., and B. Schaffer. 1997. Stress physiology of mango. p. 147-173. In: R.E. Litz (ed.) The mango: Botany, production and uses. CAB Intl. Press, London.
  17. Yonemoto, Y. 2006. Tropical fruit. p. 100-106. In: the Japanese society for horticultural science (ed.). Horticulture in Japan 2006. Shoukadoh Publication, Kyoto.