• Title/Summary/Keyword: light strength

Search Result 1,540, Processing Time 0.024 seconds

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.

Shear bond strength of ceramic and resin brackets used with visible light-cured adhesives (도재 및 레진 브라켓에 대한 광중합 접착제의 전단 접착 강도)

  • Hwang, Yu-Sun;Row, Joon;Hwaang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.233-244
    • /
    • 1996
  • The purpose of this study was to compare the shear bond strength obtained from ceramic and plastic brackets bonded with various light-cured adhesives and to evaluate their debonded failure sites. Plastic brackets, Transcend 6000, Signature and Starflre TMB brackets were bonded with Orthobond, Light Bond and Transbond on one hundred forty extracted human premolar teeth as manufacturer's descriptions. After thermocycling the brackets were debonded with an Instron universal testing machine and the debonded bracket base surfaces were inspected under stereoscope to evaluate the failure sites. Also the shear bond strength and failure patterns with different curing time and with two different source of light were compared. The results were as follows. 1. There were no statistically significant differences among the mean shear bond strength of Orthobond, Light Bond and Transbond in a same bracket group except Plastic bracket group(p<0.05). 2. The mean shear bond strength of each adhesive with different bracket groups showed statistically significant differences. Stafire TMB showed the highest shear bond strenght among the brackets in this study, but there was no statistically singnificant difference with Transcend 6000 while there was statistically significant difference with Signature.(p<0.05) 3. The various bonding failure patterns were occurred among different bracket groups but most of failure sites were bracket base -adhesive interfaces. 4. There were no statistically significant differences in shear bond strength between the groups with curing time of 10 second and 20 second, and between the groups with two different sources of light as long as sufficient light intensity(above $400mWcm^2$) were provided(p<0.05). According to the result, it should be considered in clinical use of ceramic bracket with light-cured adhesives that the shear strengths of ceramic brackets were influenced by the retention from of bracket base as well as the composition of bracket and there was no difference in the shear bond strenght among various light-cured adhesives used in this study.

  • PDF

Flexural strength of composite resin fabricated by various polymerization method (다양한 중합 방법으로 제작한 간접 수복물용 복합레진의 굴곡 강도)

  • Kim, Dong-Yeon;Park, Jin-Young;Kang, Hoo-Won;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • Purpose: The aim of this study is to evaluate composite resins of indirect restorations for testing of flexural strength according to various polymerization methods. Methods: Specimen was produced a total of 40 to 10 per each group with a length 25 mm, width 2 mm, thickness 2 mm using a Teflon zig. The polymerization groups were classified into four groups. The first group proceeded with light curing only(LC group). The second group proceeded with light and heat curing(LHC group). The third group proceeded with air press and light curing(ALC group). The fourth group proceeded with air press, light and heat curing(ALHC group). Each prepared group was evaluated by flexural strength test. Statistical analysis was performed by one-way ANOVA. Post-test was performed with Tukey test. Results: The lowest in the ALC group was 119.18 MPa and the highest in the ALHC group was 168.15 MPa. There were statistically significant differences. Conclusion : The composite resin of the indirect restoration is recommended to heat curing along with the air press.

The influence of nanofillers on the properties of ethanol-solvated and non-solvated dental adhesives

  • da Cruz, Leonardo Bairrada Tavares;Oliveira, Marcelo Tavares;Saraceni, Cintia Helena Coury;Lima, Adriano Fonseca
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.28.1-28.10
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the influence of different concentrations of nanofillers on the chemical and physical properties of ethanol-solvated and non-solvated dental adhesives. Materials and Methods: Eight experimental adhesives were prepared with different nanofiller concentrations (0, 1, 2, and 4 wt%) and 2 solvent concentrations (0% and 10% ethanol). Several properties of the experimental adhesives were evaluated, such as water sorption and solubility (n = 5, 20 seconds light activation), real-time degree of conversion (DC; n = 3, 20 and 40 seconds light activation), and stability of cohesive strength at 6 months (CS; n = 20, 20 seconds light activation) using the microtensile test. A light-emitting diode (Bluephase 20i, Ivoclar Vivadent) with an average light emittance of $1,200mW/cm^2$ was used. Results: The presence of solvent reduced the DC after 20 seconds of curing, but increased the final DC, water sorption, and solubility of the adhesives. Storage in water reduced the strength of the adhesives. The addition of 1 wt% and 2 wt% nanofillers increased the polymerization rate of the adhesives. Conclusions: The presence of nanofillers and ethanol improved the final DC, although the DC of the solvated adhesives at 20 seconds was lower than that of the non-solvated adhesives. The presence of ethanol reduced the strength of the adhesives and increased their water sorption and solubility. However, nanofillers did not affect the water sorption and strength of the tested adhesives.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

Study on Manufacturing Characteristics of Carbonated lightweight Aggregate using Sewage Sludge (하수슬러지를 이용한 탄화경량골재의 제조 특성 연구)

  • Yoo, Yeong-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.743-750
    • /
    • 2013
  • In this study, the carbonized aggregate of light weight and high mechanical strength using sewage sludge was evaluated with changing carbonation variables of temperature, detention time and feed condition. Porosity and mechanical strength was simultaneously increased according to increase of carbonization temperature unexpectedly. Carbonization detention time above 1 hour nearly affect on the porosity, but mainly on mechanical strength of the carbonized aggregate in case of clay addition. On $900^{\circ}C$, porosity and mechanical strength was increased rapidly, but above $1000^{\circ}C$, porosity began to decrease. Clay addition was very effective on increase of mechanical strength following much loss in porosity. The carbonized aggregate manufactured at $900^{\circ}C$ adding 30 % clay in sewage sludge was higher a little in porosity and 3 times in mechanical strength than those at $700^{\circ}C$ not adding clay. Consequently, in manufacturing the carbonized aggregate having simultaneously high porosity and mechanical strength, it is desirable to have operational condition of $900{\sim}1000^{\circ}C$ temperature and 1 hour time, and clay addition within 30 % for further higher mechanical strength.

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

Fabrication of Light Aggregates Using the Fly Ash-Clay Slurry

  • Seunggu Kang;Lee, Kigang;Kim, Jungwan
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.81-86
    • /
    • 1998
  • The light aggregates were fabricated by sintering green bodies made form the fly ash-clay alip. The content of fly ashes in the slip could be increased up to 70wt.% due to controlled rheological behavior of the slip, and the green body of uniform microstructure could be obtained by DCC(Direct Coagulation Casting)method. The apparent density, microstructure and compressive strength for sintered bodies fired at 1100∼1200$^{\circ}C$ were evaluated. The properties of light aggregates fabricated depend on slip density, particle behavior in the slip and sintering conditions. The sintered body prepared by firing a green body made from slip of density 1.60 at 1150$^{\circ}C$/2hr satisfied conditions of a light aggregate as apparent density of 1.49${\pm}$0.02 and compressive strength of 584${\pm}$62kg/$\textrm{cm}^2$.

  • PDF

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.