• 제목/요약/키워드: light strength

검색결과 1,537건 처리시간 0.031초

경량기포혼합토의 압축 및 강도특성 연구 (Compressibility and Strength Characteristics of Light-weighted Foam Soil)

  • 윤길림;김병탁
    • 한국지반공학회논문집
    • /
    • 제20권4호
    • /
    • pp.5-13
    • /
    • 2004
  • 본 논문에서는 경량기포혼합토의 압축성과 강도 특성에 대해 실험을 통하여 연구하였다. 경량기포혼합토는 재료의 경량화와 압축강도의 증가를 위해 해양준설토에 시멘트와 기포로 구성되어 있다. 이러한 목적을 위하여 초기 함수비, 시멘트 함유율, 실트질 준설토의 혼합을, 구속압조건 등의 다양한 조건에서 준비된 공시체로 일축압축시험 및 삼축압축시험을 수행하였다. 경량기포혼합토의 실험결과, 응력-변형거동과 압축강도는 준설토의 초기 함수비보다 시멘트 함유율에 더 큰 영향을 받는 것으로 나타났다. 또한, 본 연구에서는 초기 함수비, 시멘트 함유율, 기포 함유율을 고려한 정규화계수를 제시하였으며 경량기포혼합토의 압축강도와 정규화 계수와의 유용한 관계를 얻을 수 있었다.

양생온도에 따른 다공성 경량골재를 활용한 샌드위치 패널심재의 강도 특성 (Strength Properties of Sandwich Panel core using Cellular lightweight Aggregate according to Curing Temperature)

  • 노정식;김대규;도정윤;문경주;소양섭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.35-38
    • /
    • 2003
  • The purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature Bone in use. The experimental parameter of this study is 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity and the type of admixture such as cement, 6mm glass fiber and St/BA emulsion. Testing item is compressive and flexural strength and strength of specimen cured at standard condition is compared to that of specimen cured at 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity. As a result or this, it was revealed that the maximum or strength is developed in 6$0^{\circ}C$ or cure temperature at 100% relative humidity in case of the most of the specimen. Specimens modified by St/BA emulsion show the highest development of strength dependent on the curing tmeperature. So, it seems to be effective that evaporation curing method shoud be considered to curing the specimen as the panel core.

  • PDF

Repaired glass ionomer cement의 결합강도에 관한 연구 (A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS)

  • 서수정;김신
    • 대한소아치과학회지
    • /
    • 제23권2호
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

단면 겹치기 이음 시험에 의한 경량구조물용 접착 이음강도의 평가 (Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by Single-Lab Joint Test)

  • 이강용;김준범;최홍섭;우형표
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.87-93
    • /
    • 1997
  • The bonding strength evaluation of light weight materials for electrical vehicle applications has been performed through single lap joint tests in which the design parameters such as fillet, joint style, adherend, bonding overlap length,bonding thickness, and environmental condition(soaking time in $25^{\circ}C$ water) are considered. It is experimentally oberved that lap shear strength of joint increases for higher fillet height, longer overlap length, and thinner bonding layer thickness. Al-Al adherend combination shows much higher lap shear strength than AL-FRP and FRP-FRP adherend combinations. Riveting at adhesive bonded joint of AL-AL adherend combination makes lap shear strength decrease. Effect of soaking time on lap shear strength is negligible.

  • PDF

T형 이음 접합에 의한 경량구조물용 접착이음강도의 평가 (Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by T-Peel Joint Test)

  • 이강용;공병석;우형표
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.56-65
    • /
    • 1998
  • The bonding strength evaluation of the light weight materials for an electrical vehicle has been performed through the T-peel joint test in which the design paramete- rs such as joint style, adherend type, adherend thickness, adhesive thickness, and adhesive type are considered. It is experimentally observed that the peel strength of joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the peel strength of joint increases a little. Aluminum-FRP adherend combination shows such higher peel strength than that of Aluminum-Aluminum adherend combination. For the adhesive bonded joint, the results of FEM analysis agree with those of experiment. The adhesive bonded joint reinfored with a rivet gives higher peel strength than that of the joint without rivet.

  • PDF

전단접착강도와 탈락양상을 고려한 브라켓-접착제의 선택 (A Study on Bracket-Adhesive Combinations in Aspect of Shear Bond Strength and Bond Failure)

  • 한재익;손우성
    • 대한치과교정학회지
    • /
    • 제28권6호
    • /
    • pp.955-974
    • /
    • 1998
  • 적절한 전단접착강도를 가지면서 법랑질손상과 브라켓파절을 적게 일으키는 브라켓-접착제의 그룹을 찾아내기 위하여 전단접착강도, 법랑질손상, 브라켓탈락양상, 브라켓 주위의 밀봉과 법랑질-접착제-브라켓 사이의 긴밀도를 연구하였다. 교정치료 목적으로 발치한 240개의 치아를 각각 10개씩 24개의 군으로 나누어서 브라켓을 접착한 후 48시간 후에 전단접착강도를 측정하고 브라켓 탈락 양상을 조사하였다. 또한 브라켓 주위의 밀봉과 법랑질-접착제-브라켓 사이의 긴밀도를 평가하기 위하여 브라켓이 접착된 치아를 반으로 자른 후 주사전자현미경상에서 관찰하였다. 6종류의 브라켓과 4종류의 접착제가 사용되었으며 브라켓은 Image, Plastic, Crystaline, Fascination, Transcend, metal bracket을 사용하였으며 접착제로는 No-mix, Light-Bond, OrthoLC, Superbond C&B가 사용되었다. 이와같은 연구로부터 다음과 같은 결론을 내렸다. 1. 전단접착강도는 Fascination-Light Bond 군에서 36.58 Kg(410.07 Kg/$cm^2$)으로 가장 높았으며 Image-OrthoLC 군에 서 8.93 B◎ (75.51 Kg/$cm^2$)으로 가장 낮았다. OrthoLC를 접착제로 사용하였을 때 전단접착강도는 다른 접착제를 사용하였을 때 보다 비교적 낮았다. 2. 접착제의 종류에 관계없이 Fascination bracket의 전단접착강도는 비교적 높았으며 Image, Plastic bracket의 전단접착강도는 비교적 낮았다. Crystaline, Transcend bracket의 전단접착강도는 metal bracket의 전단접착강도와 비슷하거나 낮았다. 3. 전단접착강도와 법랑질 파절, 브라켓 파절은 상관관계가 있었으며, 접착강도가 증가할수록 법랑질 파절과 브라켓 파절은 증가하였다. 4. OrthoLC를 접착제로 사용하였을 때 법랑질 파절과 브라켓 파절은 일어나지 않았으나 Superbond C&B를 접착제로 사용하였을 때는 법랑질 파절과 브라켓 파절의 빈도가 높았다. 5. No-mix, Light-Bond를 접착제로 사용하였을 때 브라켓 주위의 밀봉과 법랑질-접착제-브라켓의 긴밀도는 양호하였다. 접착제의 종류에 관계없이 Ceramic bracket에서 접착제-브라켓의 긴밀도는 양호하였다. 6. 적절한 전단접착강도를 가지면서 법랑질 파절과 브라켓 파절을 일으키지 않는 군은 Crystaline-No mix, Crystaline Light Bond, Crystaline-OrthoLC, metal-No mix, metal-Light Bond, metal-OrthoLC군이였다.

  • PDF

경량합성 패널의 압축성능 평가에 관한 실험적 연구 (An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel)

  • 이상섭;박금성
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.455-462
    • /
    • 2007
  • 본 논문은 스틸스터드로 구성된 골조에 경량기포 모르터를 충전하여 제작한 경량합성벽체의 압축 실험을 통한 압축 성능의 평가에 대한 연구이다. 경량기포 모르터의 비중(80, 120), 마감재(경량기포 모르터, OSB, 석고보드) 및 패널의 고정 방식을 변수로 하여 실험체를 제작 실험하였다. 선행 연구결과와 고정부를 개선시킨 경량합성 벽체의 압축성능에 대해 실험을 통해 조사한 결과, 상세개선으로 인한 경량합성패널의 압축 최대하중은 1.07배, 초기강성은 24배 이상 성능이 크게 향상되었다. 비중과 마감재가 동일한 실험체의 경우에는 최대하중은 2.7배, 초기강성은 15배 이상 압축으로 인한 성능이 크게 향상됨을 알 수 있다. 국내설계기준에 의해 계산한 최대하중값과 실험값은 비교적 잘 일치하였다.

의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구 (AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS)

  • 이주희;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF

3종의 간접수복용 복합레진의 굴곡강도 비교 및 표면관찰 (Evaluation of Flexural strength and surface porosity of three indirect composite resins)

  • 김준태;박진영;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate flexural strength, composite surface and fractured surface of three different indirect composite resins. Methods: Fifteen bar-shaped specimens ($25mm{\times}2mm{\times}2mm$) were fabricated for each FL group (Flow type and Light curing) and PLP group (Putty type and Light, Pressure curing) and PL group (Putty type and Light curing) according to manufacturer's instructions and ISO 10477. Fabricated specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending strength test was performed to measure flexural strength using universal testing machine at a crosshead speed of 1mm/min (ISO 10477). Surface and fractured surface of specimens were observed by digital microscope. Results were analyzed with Kruskal-wallis tests (${\alpha}=0.05$). Results: Mean (SD) of three different indirect composite resins were 83.38 (6.67) MPa for FL group, 139.90(16.53) MPa for PLP group and 171.72(16.74) MPa for PL group. Flexural strength were statistically significant (p<0.05). Differences were not observed at fractured surface among three groups. However, many pores over $100{\mu}m$ were observed at PL group in observing surface of specimen. Conclusion: Flexural strength of composite resins was affected by second polymerization method and content of inorganic filler.

표면처리된 복합레진에 대한 수리용 레진의 결합강도에 관한 연구 (A STUDY ON THE BOND STRENGTH OF REPAIR RESIN TO THE SURFACE TREATED COMPOSITE RESINS)

  • 강현숙;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제20권2호
    • /
    • pp.487-507
    • /
    • 1995
  • Composite resin repair requires strong bond strength between the new and old materials. The objective of the current study was to identify the optimal treatments for sufficient bond strengths. Bondings between same kinds of materials and cross bondings using chemical curing composites and light curing composites were tested. Surface treatments included the methods of sand-blasting, acid etching and coating of bonding agent. Seven kinds cases of combinations from three kinds of methods were experimented and compared with a control group of which surfaces were highly polished. Measurements of shear bond strength and observations of surface morphologic changes using a scanning electron microscope were done. Following conclusions were drawn : 1. The highest bond strength among composite resins were exhibited by the treatment of the sand-blasting and the coating of bonding agent. 2. Acid etched surfaces showed the lowest bond strength. Bond strengths obtained from experimental groups including acid etching were lower than those obtained from same kinds of experimental groups without acid etching. 3. Simple method of the coating of bonding agent produced the slightly increased bond strength on chemical curing composite and reduced bond strength on light curing composite. 4. Bonding surfaces of chemical curing composite resin showed slightly higher bond strengths than light curing composite resin, however significant differences were not confirmed statistically. 5. More significant irregular surfaces were created by sand-blasting method than acid etching method. 6. A principal component of fillers of both resins was silicon. Acid etching method produced the seperations and degradations of fillers, these were significant on light curing composite resins which containing barium fillers.

  • PDF