• Title/Summary/Keyword: light rare-earth elements

Search Result 29, Processing Time 0.024 seconds

Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu,Dy,Nd) (SrAl2O4(Eu,Dy,Nd) 압광체를 이용한 균열첨단에서의 응력장 가시화 연구)

  • 김지식;손기선
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.493-497
    • /
    • 2003
  • The present investigation aims at visualizing the crack tip stress field using a mechanoluminescence material. The well known compound $SrAl_2O_4$:$Eu^{2+}$ was adopted as a mechanolurninescence material. Two more trivalent rare-earth elements such as Dy and Nd were taken into consideration as codopants to provide the appropriate trap levels. Samples of a variety of compositions were prepared by varing $Eu^{2+}$, $Dy^{3+}$, and $Nd^{3+}$ doping contents, for which the combinatorial chemistry method was used. In order to search for the optimum composition for the highest mechanoluminescence, the luminescence induced by a compressive device including a CCD camera. In parallel, a compact tension specimen was prepared by mixing the luminescence powders of optimum composition and epoxy resin. Crack initiation from the mechanically machined sharp note tip and its growth during loading were found to be associated with the extent of light emission from $SrAl_2O_4$.

Banded Iron Formations in Congo: A Review

  • Yarse Brodivier Mavoungou;Anthony Temidayo Bolarinwa;Noel Watha-Ndoudy;Georges Muhindo Kasay
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.745-764
    • /
    • 2023
  • In the Republic of Congo, Banded iron formations (BIFs) occur in two areas: the Chaillu Massif and the Ivindo Basement Complex, which are segments of the Archean Congo craton outcropping in the northwestern and southwestern parts of the country. They show interesting potential with significant mineral resources reaching 2 Bt and grades up to 60% Fe. BIFs consist mostly of oxide-rich facies (hematite/magnetite), but carbonate-rich facies are also highlighted. They are found across the country within the similar geological sequences composed of amphibolites, gneisses and greenschists. The Post-Archean Australian Shale (PAAS)-normalized patterns of BIFs show enrichment in elements such as SiO2, Fe2O3, CaO, P2O5, Cr, Cu, Zn, Nb, Hf, U and depletion in TiO2, Al2O3, MgO, Na2O, K2O, Sc, Th, Ba, Zr, Rb, Ni, V. REE diagrams show slight light REEs (rare earth elements; LREEs) compared to heavy REEs (HREEs), and positive La and Eu anomalies. The lithological associations, as well as the very high (Eu/Eu*)SN ratios> 1.8 shown by the BIFs, suggest that they are related to Algoma-type BIFs. The positive correlations between Zr and TiO2, Al2O3, Hf suggest that the contamination comes mainly from felsic rocks, while the absence of correlations between MgO and Cr, Ni argues for negligeable contributions from mafic sources. Pr/Pr* vs. Ce/Ce* diagram indicates that the Congolese BIFs were formed in basins with redox heterogeneity, which varies from suboxic to anoxic and from oxic to anoxic conditions. They were formed through hydrothermal vents in the seawater, with relatively low proportions of detrital inputs derived from igneous sources through continental weathering. Some Congolese BIFs show high contents in Cr, Ni and Cu, which suggest that iron (Fe) and silicon (Si) have been leached through hydrothermal processes associated with submarine volcanism. We discussed their tectonic setting and depositional environment and proposed that they were deposited in extensional back-arc basins, which also recorded hydrothermal vent fluids.

Equilibrium Growth of Allanite and Zircon during Amphibolite-facies Metamorphism (각섬암상 변성작용 중 갈렴석과 저어콘의 평형 성장)

  • Kim, Yoonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The U-Pb isotopic and rare earth element compositions of zircon were measured using a SHRIMP from a tonalitic gneiss sample DE43 in Daeijak Island, central Korea. Zircon crystals, up to ${\sim}300{\mu}m$ in diameter, rarely contain thin overgrowth rims. In contrast to Paleoproterozoic cores, the $^{206}Pb/^{238}U$ ages of $256{\pm}23Ma(1{\sigma})$, and $221{\pm}7Ma(1{\sigma})$ were yielded from two spot analyses on the overgrowth rims of zircon. The rims are geochemically characterized by low Th/U ratios (<0.01) and strongly depleted light rare earth elements. The Permian-Triassic apparent ages of zircon are consistent with the $^{208}Pb/^{232}Th$ ages dated from allanite ($227{\pm}7Ma(t{\sigma})$) in the same sample within uncertainties, indicating an equilibrium growth of allanite and zircon at ~227 Ma. On the other hand, the younger $^{208}Pb/^{232}Th$ and $^{206}Pb/^{238}U$ ages ($213{\pm}4Ma(t{\sigma})$ and $186{\pm}9Ma(t{\sigma})$, respectively) of allanite may result from Pb loss due to the infiltration of alkali fluids from Late Triassic and Jurassic granitoids nearby.

Element distribution of the surface sediments from the loess plateau in China (황토고원 표층 시료의 원소분포 특성)

  • Yoon, Yoon Yeol;Kwon, Young Ihn;Cho, Soo Young;Lee, Kil Yong
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.468-473
    • /
    • 2007
  • The chemical composition distribution of the surface samples collected from the loess plateau in China were estimated. Major elements concentration distribution difference between 10 different sampling site were not found except sample 3. This sample had higher contents of Ca, Mg, LOI and lower contents of Si, Fe, P, Na, Ti. And also, minor element contents such as Ba, Cr, Nb, Pb, Rb, Zr, V were lower than other samples. UCC-normalized abundances of the most elements were within $0.5-1.5{\times}UCC$ and Cr showed enrichment aspect. Rare-earth element (REE) analysis results showed light REE enriched pattern compared to heavy REE with negative Eu anomaly in condrite-normalized REE pattern.

Major, Trace and Rare Earth Element Geochemistry, and Oxygen-Isotope Systematics of Illite/smectite in the Reindeer D-27 Well, Beaufort-Mackenzie Basin, Arctic Canada (카나다 보포트-맥켄지 분지의 일라이트/스멕타이트의 원소 지화학 및 산소동위원소 연구)

  • Ko, J.;Hesse, R.;Longstaffe, F.J.
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.351-367
    • /
    • 1995
  • The elemental geochemistry and oxygen isotopes of illite/smectite (I/S) have been studied in relationship to the mineralogical trend in the Reindeer D-27 well, Beaufort-Mackenzie Basin. The increase in concentrations of $K_2O$, Rb and rare earth elements (REE), the decrease in concentrations of tetrahedral elements such as Mg, Ti, Sc, Zn and Zr, and the increase in concentrations of tetrahedral elements such as Be and V can be related to I/S compositions that vary systematically with depth. Layer formulae of S- and I-layers are estimated as $[Al_{1.57}Fe_{.19}Mg_{.31}Ti_{.07}][Si_{3.84}Al_{.16}]O_{10}(OH)_2$ and $[Al_{1.84}Mg_{.16}][Si_{3.33}Al_{.67}]O_{10}(OH)_2$, respectively. The mobilization of REE appears to occur during illitization. The increase in concentrations of REE, especially La and Ce, with depth is probably linked to incorporation of ions with high valency (e.g. $V^{5+}$) in tetrahedral sites. The excess valency due to V is partly counter-balanced by ions with low valency (e.g. $Be^{2+}$) and, in turn, the local valency deficiency caused by $Be^{2+}$ could be compensated by high-charge interlayer cations such as REE (+3). ${\delta}^{18}O$ values of I/S range from 2.91 to 15.72‰ (SMOW), and increase with depth, contrasting to trends observed in the Gulf Coast and elsewhere. The increase in ${\delta}^{18}O$ of I/S results from the rapid increase in ${\delta}^{18}O$ of pore water that overcomes the decrease in temperature-dependent fractionation values with increasing burial depth (${\delta}^{18}O_{pore\;water}>-d{\Delta}/_{I/S-water};\;d{\delta}^{18}O_{I/S}>0$). Calculated ${\delta}^{18}O$ values of pore water in equilibrium with I/S suggest that the original water was probably meteoric water. The stratification of pore water is postulated from the presence of an isotopically light interval, about 450m thick. The depth range of the isotopically light zone overlaps, but does not coincide with the interval of lowered I-content and $K_2O$ concentrations, suggesting that oxygens may have been exchanged independently of mineralogical and geochemical reactions.

  • PDF

Rare Metal Occurrences within the Anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea (하동-산청지역 회장암에 배태된 희유금속자원에 관한 연구)

  • Kim, Won-Sa;Jeong, Ji-Gon;Lee, Gang-Ho;Watkinson, D.H.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 1992
  • Allanite crystals rich in rare-earth elements(REE) occur in soil developed on top of anorthositic rocks in the Jungsu-ri area of Okjong-myun, Hadong-run, where large Ti orebodies are embedded in the bed rock. In this study allanite is investigated mainly by transmitted light microscopy, electron microprobe analysis, atomic absoption spectrophotometry, X-ray diffraction, infrared spectrocopy. In addition, its specific gravity and micro=indentation hardness value are measured. Allanite occurs with max. dimension of $3cm{\times}6cm$ and coexists with quartz, epidote, zircon, biotite and muscovite. It shows nearly nonmetamict crystallinity, although ${\alpha}$-particles bombardment from the disintegration of the radioactive element Th is detected by an autoradiography. The allanite is particularly enriched in REE(19.88-23.99 wt.%), but is deficient in CaO(8.35-10.29wt.%). Genesis of the allanite in this area is not understood yet. It is, however, assumed to have been formed from magmatic fluid rich in REE and Ti, based on the facts that it ocexists with zircon and that it has high $TiO_2$(0.89-1.13 wt.%) whose concentration is significant in the country rocks.

  • PDF

Optogalvanic Spectroscopy of U, Th and Rb using Diode Lasers (반도체 다이오드 레이저를 사용한 U, Th 및 Rb 의 Optogalvanic Spectroscopy 에 관한 연구)

  • Lee, Sang Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • First observation of uranium using a diode laser was published recently. The experiment was performed by the optogalvanic spectroscopy using diode lasers. A laser source causes the current change in a hollow cathode discharge lamp when metal atoms in plasma absorb the diode laser light. The optogalvanic signal is collected by detecting the current change. This work is the extended investigation of our previous research, the uranium detection using a diode laser. New electronic transitions of uranium and thorium in 775∼850 nm were investigated using diode lasers. In addition, the Rb(Ⅰ) optogalvanic spectra at 780.02 nm and 794.76 nm were studied. The Rb(Ⅰ) spectrum at 780.02 nm showed the isotopic features and hyperfine splittings. This work provides a key idea that the diode lasers are useful in the specrochemical analysis of the radioactive actinides that have a rich spectrum with transitions which can be easily reached with AlGaAs diode lasers. Also, this study shows that the diode lasers can be an important tool to find the spectroscopic parameters of actinides and rare earth elements which have not known.

  • PDF

Mineralogical and Geochemical Characteristics and Designation of Key Beds for the Effective Surveys in the Jeonnam Clay Deposits (전남일원 점토광상의 광물 및 지화학적 특성과 효과적 탐사를 위한 건층의 선정)

  • Yoo, Jang-Han;Koh, Sang-Mo;Moon, Dong-Hyuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.265-278
    • /
    • 2011
  • Clayey ores of the Jeonnam province mainly consist of pyrophyllite (monoclinic), kaolinite (1T), and minor amounts of quartz, muscovite, and feldspars. Mineralogical studies revealed that two kinds of clay minerals were mainly produced from the volcanic sediments with similar ages and compositions. Kaolinite deposits sometimes contain neither diaspore nor corundum, but alunites are often found in the upper portions of the kaolin ore bodies. On the other hand, corundum and diaspore are commoner in the pyrophyllite deposits than the kaolin deposits. As ages of rock formations are becoming younger, amounts of pyrophyllite and kaolinite are rather radically decreased, and finally disappeared. But muscovite, quartz, and plagioclase feldspars are inclined to be preserved because of weak alteration. Most of clay ore bodies contain purple tuff beds on the uppermost portion, and silicified beds, tuff, and lapillistone are found in an ascending order in the most of clay quarries. Chemical analyses show that higher contents of $Al_2O_3$ might not necessarily be due to the argillization, since some tuffs contain higher $Al_2O_3$ contents originated from feldspars. $SiO_2$ contents are fairly higher in the silicified beds than in those of adjacent formations, which might have been introduced from the ore bodies. And $K_2O$ contents are obviously lower than those of $Na_2O$ and CaO in the ores and their vicinities. Ignition losses of some of clays represent much higher contents than those of the ordinary ones because of the sporadic presence of alunite, diaspore and corundum which are accompanied with lots of $SO_4$ and $Al_2O_3$ contents. REE (rare earth element) abundances of most of volcanics and clay ores show rather higher LREE (light rare earth elements) contents, and represent small to moderately negative Eu anomalies. Though most of ores ususally show milky white color, fine-grained and well bedded formations which could be easily discernible in the most of outcrop. But more distinct characteristics are desirable where rather massive ore bodies exist. Purple tuffs and silicified beds above the ore bodies would be useful as marker horizons/key beds since they have rather obvious lithology, extension and mineralogy than those of other adjacent formations.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.