DOI QR코드

DOI QR Code

Equilibrium Growth of Allanite and Zircon during Amphibolite-facies Metamorphism

각섬암상 변성작용 중 갈렴석과 저어콘의 평형 성장

  • Kim, Yoonsup (Department of Earth & Environmental Sciences, Chungbuk National University)
  • 김윤섭 (충북대학교 지구환경과학과)
  • Received : 2018.05.19
  • Accepted : 2018.06.06
  • Published : 2018.06.30

Abstract

The U-Pb isotopic and rare earth element compositions of zircon were measured using a SHRIMP from a tonalitic gneiss sample DE43 in Daeijak Island, central Korea. Zircon crystals, up to ${\sim}300{\mu}m$ in diameter, rarely contain thin overgrowth rims. In contrast to Paleoproterozoic cores, the $^{206}Pb/^{238}U$ ages of $256{\pm}23Ma(1{\sigma})$, and $221{\pm}7Ma(1{\sigma})$ were yielded from two spot analyses on the overgrowth rims of zircon. The rims are geochemically characterized by low Th/U ratios (<0.01) and strongly depleted light rare earth elements. The Permian-Triassic apparent ages of zircon are consistent with the $^{208}Pb/^{232}Th$ ages dated from allanite ($227{\pm}7Ma(t{\sigma})$) in the same sample within uncertainties, indicating an equilibrium growth of allanite and zircon at ~227 Ma. On the other hand, the younger $^{208}Pb/^{232}Th$ and $^{206}Pb/^{238}U$ ages ($213{\pm}4Ma(t{\sigma})$ and $186{\pm}9Ma(t{\sigma})$, respectively) of allanite may result from Pb loss due to the infiltration of alkali fluids from Late Triassic and Jurassic granitoids nearby.

한반도 중서부 서해 연안 대이작도에 산출하는 토날라이트질 편마암 시료(DE43)의 저어콘 결정에서 U-Pb 동위원소 및 희토류 원소 성분을 이차이온질량분석기를 이용하여 측정하였다. 최대 ${\sim}300{\mu}m$ 크기의 저어콘 결정들은 드물게 과성장 띠를 가진다. 고원생대 연령을 가지는 중심부와 달리 저어콘의 과성장 띠로부터 분석한 두 개의 점 분석에서 $256{\pm}23Ma(1{\sigma})$, and $221{\pm}7Ma(1{\sigma})$$^{206}Pb/^{238}U$ 연령을 구하였다. 이 과성장 띠들은 낮은 Th/U 비(<0.01)와 경희토류 원소가 강하게 결핍된 지화학적 특징을 보인다. 이 저어콘의 페름기-트라이아스기 겉보기 연령은 동일한 시료에서 분석한 갈렴석 $^{208}Pb/^{232}Th$ 연령($227{\pm}7Ma(t{\sigma})$)과 오차범위 내에서 일치하며, 갈렴석과 저어콘이 ~227 Ma때 평형 성장하였음을 지시한다. 한편, 동일한 시료에서 측정된 보다 더 젊은 갈렴석 $^{208}Pb/^{232}Th$ 연령과 $^{206}Pb/^{238}U$ 연령(각각 $213{\pm}4Ma(t{\sigma})$$186{\pm}9Ma(t{\sigma})$)은 주변에 산출하는 후기 트라이아스기 및 쥐라기 화강암의 관입에 수반된 알칼리성 유체 유입에 의한 Pb 손실에 기인한 것으로 보인다.

Keywords

References

  1. Buzdyn, B., Harlov,D.E., Williams, M.L. and Jercinovic, M.J., 2011, Experimental determination of stability relations between monazite, fluoapatite, allanite, and REEepidote as a function of pressure, temperature, and fluid compositions. American Mineralogist, 96, 1547-1567. https://doi.org/10.2138/am.2011.3741
  2. Catlos, E.J., Sorensen, S.S. and Harrison, T.M., 2000, Th-Pb ion microprobe dating of allanite. American Mineralogist, 85, 633-648. https://doi.org/10.2138/am-2000-5-601
  3. Cenki Tok, B., Oliot, E., Rubatto, D., Berger, A., Engi, M., Janots, E., Thomsen, T.B., Manzotti, P., Regis, D., Spandler, C. and Robyr, M., 2011, Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: mechanical and chemical behaviour of allanite during mylonitization. Lithos, 125, 40-50. https://doi.org/10.1016/j.lithos.2011.01.005
  4. Cheong, C.-S., Kim, N., Yi, K., Jo, H.J., Jeong, Y.-J., Kim, Y., Koh, S.M. and Iizuka, T., 2015, Recurrent rare earth element mineralization in the northwestern Okchon Metamorphic Belt, Korea: SHRIMP U-Th-Pb geochronology, Nd isotope geochemistry, and tectonic implications. Ore Geology Reviews, 71, 99-115. https://doi.org/10.1016/j.oregeorev.2015.05.012
  5. Cheong, W., Cho, M. and Kim, Y., 2013, An efficient method for zircon separation using the gold pan. Journal of the Petrological Society of Korea, 22, 63-70. https://doi.org/10.7854/JPSK.2013.22.1.063
  6. Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}Ar$ analysis. In: Berggren, W.A., Kent, D.B., Auberey, M.P. and Hardenbol, J. (eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication, 4, 3-21.
  7. Cho, D.-L. and Lee, S.-b, 2016, Geological report of the Gureopdo, Deokjeokdo, Baegado, Seongapdo Sheets, scale 1:50,000. Korea Institute of Geoscience and Mineral Resources, 54p.
  8. Cho, M., Kim, H., Lee, Y., Horie, K. and Hidaka, H., 2008, The oldest (ca. 2.51 Ga) rock in south Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  9. Cumming, G. and Richards, J., 1975, Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155-171. https://doi.org/10.1016/0012-821X(75)90223-X
  10. Engi, M., 2017, Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83, 365-418.
  11. Gabudianu Radulescu, I., Robatto, D., Gregory, C., and Compagnoni, R., 2009, The age of HP metamorphism in the Gran Paradiso Massif, Western Alps: A petrological and geochronological study of "silvery micaschists". Lithos, 110, 95-108. https://doi.org/10.1016/j.lithos.2008.12.008
  12. Giere, R. and Sorensen S.S., 2004, Allanite and other REErich epidote-group minerals. Reviews in Mineralogy and Geochemistry, 56, 431-493. https://doi.org/10.2138/gsrmg.56.1.431
  13. Gregory, C., Rubatto, D., Allen, C.M., Williams, I.S., Hermann, J. and Ireland, T., 2007, Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb study. Chemical Geology, 245, 162-182. https://doi.org/10.1016/j.chemgeo.2007.07.029
  14. Gregory, C., Rubatto, D., Hermann, J., Berger, A. and Engi, M., 2012, Allanite behaviour during incipient melting in the southern Central Alps. Geochimica et Cosmochimica Acta, 84, 433-458. https://doi.org/10.1016/j.gca.2012.01.020
  15. Harlov, D.E., Wirth, R. and Hetherington, C.J., 2011, Fluidmediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element distribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329-348. https://doi.org/10.1007/s00410-010-0599-7
  16. Hermann, J., 2002, Allanite: thorium and light rare earth element carrier in subducted crust. Chemical Geology, 192, 289-306. https://doi.org/10.1016/S0009-2541(02)00222-X
  17. Hetherington, C.J., Harlov, D.E. and Budzyn, B., 2010, Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineralogy and Petrology, 99, 165-184. https://doi.org/10.1007/s00710-010-0110-1
  18. Hoskin, P.W.O., 1998, Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: a consideration and comparison of two broadly competitive techniques. Journal of Trace and Microprobe Techniques, 16, 301-326.
  19. Hoskin, P.W.O. and Schaltegger, 2003, The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62. https://doi.org/10.2113/0530027
  20. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. and Spandler, C., 2008, Prograde metamorphic sequences of REE-minerals in pelitic rocks of the Central Alps; implications for allanite-monazite-xenotime phae relations. Journal of Metamorphic Geology, 26, 509-526. https://doi.org/10.1111/j.1525-1314.2008.00774.x
  21. Janots, E., Engi, M., Rubatto, D. and Gregory, C., 2009, Metamorphic rates of collisional orogeny from in situ allanite and monazite dating. Geology, 37, 11-14. https://doi.org/10.1130/G25192A.1
  22. Janots, E. and Rubatto, D., 2014, U-Th-Pb dating of collision in the external Alpine domains (Urseren zone, Switzerland) using low temperature allanite and monazite. Lithos, 184, 155-166.
  23. Kim, Y., Cho, M. and Yi, K., 2009a, Parageneses and Th-U distributions among allanite, monazite, and xenotime in Barrovian-type metapelites, Imjingang belt, central Korea. American Mineralogist, 94, 430-438. https://doi.org/10.2138/am.2009.2769
  24. Kim, Y., Cheong, C.-S., Lee, Y. and Williams, I. S., 2009b, SHRIMP allanite U-Th-Pb dating of bimodal Triassic metamorphism of Neoarchean tonalitic gneisses, Daeijak Island, central Korea. Geosciences Journal, 13, 305-315. https://doi.org/10.1007/s12303-009-0029-x
  25. Korh, A., 2014, Ablation behaviour of allanites during UTh-Pb dating using a quadrupole ICP-MS coupled to a 193 nm excimer laser. Chemical Geology, 371, 46-59. https://doi.org/10.1016/j.chemgeo.2014.01.021
  26. McFarlane, C.R., 2016, Allanite U-Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration. Chemical Geology, 438, 91-102. https://doi.org/10.1016/j.chemgeo.2016.05.026
  27. Meldrum, A., Boatner, L.A., Weber, W.J. and Ewing, R.C., 1998, Radiation damage in zircon and monazite. Geochimica et Cosmochimica Acta, 62, 2509-2520. https://doi.org/10.1016/S0016-7037(98)00174-4
  28. Oberli, F., Meier, M., Berger, A., Rosenberg, C.L. and Giere, R, 2004, U-Th-Pb and $^{230}Th/^{238}U$ disequilibrium isotope systematics: Precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochimica et Cosmochimica Acta, 68, 2543-2560. https://doi.org/10.1016/j.gca.2003.10.017
  29. Paces, J.B. and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98, 13997-14013. https://doi.org/10.1029/93JB01159
  30. Romer, R.L. and Siegesmund, S., 2003, Why allanite may swindle about its true age. Contributions to Mineralogy and Petrology, 146, 297-307. https://doi.org/10.1007/s00410-003-0494-6
  31. Romer, R.L. and Xiao, Y., 2005, Initial Pb-Sr(-Nd) isotopic heterogeneity in a single allanite-epidote crystal: implications of reaction history for the dating of minerals with low parent-to-daughter ratios. Contributions to Mineralogy and Petrology, 148, 662-674. https://doi.org/10.1007/s00410-004-0630-y
  32. Romer, R.L. and Rotzler, J., 2011, The role of element distribution for the isotopic dating of metamorphic minerals. European Journal of Mineralogy, 23, 17-33. https://doi.org/10.1127/0935-1221/2011/0023-2081
  33. Rubatto, D., Muntener, O., Barnhoorn, A. and Engi, M., 2008, Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American Mineralogist, 93, 1519-1529. https://doi.org/10.2138/am.2008.2874
  34. Rubatto, D., Hermann, J., Berger, A. and Engi, M., 2009, Protracted fluid-present melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158, 703-722. https://doi.org/10.1007/s00410-009-0406-5
  35. Rubatto, D., 2017, Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261-295.
  36. Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E. and Wirth, R., 2012, Low-temperature alteration of monazite: fluid mediated coupled dissolution-reprecipitation, irradiation damage, and disturvance of the U-Pb and Th-Pb chronometers. Chemical Geology, 330-331, 140-158. https://doi.org/10.1016/j.chemgeo.2012.07.031
  37. Smye, A.J., Roberts, N.M.W., Condon, D.J., Horstwood, M.S.A. and Parrish, R.R., 2014, Characterising the U-Th-Pb systematics of allanite by ID and LA-ICP-MS: Implications for geochronology. Geochimica et Cosmochimica Acta, 135, 1-28. https://doi.org/10.1016/j.gca.2014.03.021
  38. Steck, A., Della Torre, F., Keller, F., Pfeifer, H.-R., Hunziker, J. and Masson, H., 2013, Tectonics of the Lepontine Alps: ductile thrusting and folding in the deepest tectonic levels of the Central Alps. Swiss Journal of Geosciences, 106, 427-450. https://doi.org/10.1007/s00015-013-0135-7
  39. Suzuki, K., Dunkley, D., Adachi, M. and Chwae, U., 2006, Discovery of a c. 370 Ma granite gneiss clast from the Hwanggangri pebble-bearing phyllite in the Okcheon metamorphic belt, Korea. Gondwana Research, 9, 85-94. https://doi.org/10.1016/j.gr.2005.06.004
  40. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks III, W.C. and Ridley, W.I. (eds.), Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology, 7, 1-35.
  41. Wing, B.A., Ferry, J.M. and Harrison, T.M., 2003, Prograde destruction and fromation of monazite and allanite during contact and regional metamorphism of pelites. Contributions to Mineralogy and Petrology, 145, 228-250. https://doi.org/10.1007/s00410-003-0446-1
  42. Yi, K. and Cho, M., 2009, SHRIMP geochronolgy and reaction texture of monazite from a retrogressive transitional layer, Hwacheon Granulite Complex, Korea. Geosciences Journal, 13, 293-304. https://doi.org/10.1007/s12303-009-0028-y