• Title/Summary/Keyword: light precipitation

Search Result 164, Processing Time 0.034 seconds

Water Physiology of Panax ginseng Charcteristics of reproductit.e organs and precipitation rate and humidity of shade system. (인삼의 수분생리 II. 생식기관의 특성과 일복의 누수량 및 습도)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.84-99
    • /
    • 1982
  • Water content and its seasonal change in reprodltctive organs were reviewed in relation to cultivation practice s. Precipitati on and humidity under shade roof were reviewed in relation to shading ,jystem and environmental factors. High water content of reproductive organs suggests vulnerability to water stress during reproductive growth stage. Watering during dehisconce treat menu seems to keep optimum temperature but cnoventional practice seems to be too often In watering. Information effe on water physiology of seeds is too rare to develop seed storing method and ctive seed use. Dehiscent mechanism was considered in terms of water absorption of embryo. Precipitation rate of conventional shade roof reaclled to 38% and at line level 50% and varied with shade patterns. Precipitation rate under shade has been investigated for itself but should be investigated in relation to light intensity and soil moisture content Relative humidity under shade depends mainly on air humidity and soil moisture, considerably on shade materials and lithe on pole height, bed width or plant density. Since relative humidity was lower in afternoon it was often less than 50% even in summer with high temperature suggesting possible disorder of phi biological function especially in photosynthesis. More information was needed on optimum humidity for productive physiological function of leaf.

  • PDF

Impact of Urban Canopy and High Horizontal Resolution on Summer Convective Rainfall in Urban Area: A case Study of Rainfall Events on 16 August 2015 (도시 캐노피와 수평 고해상도가 여름철 대류성 도시 강수에 미치는 영향: 2015년 8월 16일 서울 강수 사례 분석)

  • Lee, Young-Hee;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.141-158
    • /
    • 2016
  • The objective of this study is to examine the impact of urban canopy and the horizontal resolution on simulated meteorological variables such as 10-m wind speed, 2-m temperature and precipitation using WRF model for a local, convective rainfall case. We performed four sensitivity tests by varying the use of urban canopy model (UCM) and the horizontal resolution, then compared the model results with observations of AWS network. The focus of our study is over the Seoul metropolitan area for a convective rainfall that occurred on 16 August 16 2015. The analysis shows that mean diurnal variation of temperature is better simulated by the model runs with UCM before the convective rainfall. However, after rainfall, model shows significant difference in air temperature among sensitivity tests depending on the simulated rainfall amount. The rainfall amount is significantly underestimated in 0.5 km resolution model run compared to 1.5 km resolution, particularly over the urban areas. This is due to earlier occurrence of light rainfall in 0.5 km resolution model. Earlier light rainfall in the afternoon eliminates convective instability significantly, which prevents occurrence of rainfall later in the evening. The use of UCM results in a higher maximum rainfall in the domain, which is due to higher temperature in model runs with urban canopy. Earlier occurrence of rainfall in 0.5 km resolution model is related to rapid growth of PBL. Enhanced mixing and higher temperature result in rapid growth of PBL, which provides more favorable conditions for convection in the 0.5 km resolution run with urban canopy. All sensitivity tests show dry bias, which also contributes to the occurrence of light precipitation throughout the simulation period.

Synthesis of Cd1-xZnxS/K4Nb6O17 Composite and its Photocatalytic Activity for Hydrogen Production

  • Liang, Yinghua;Shao, Meiyi;Liu, Li;Hu, Jinshan;Cui, Wenquan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1182-1190
    • /
    • 2014
  • $Cd_{1-x}Zn_xS$-sensitized $K_4Nb_6O_{17}$ composite photocatalysts (designated $Cd_{1-x}Zn_xS/K_4Nb_6O_{17}$) were prepared via a simple deposition-precipitation method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), $N_2$ sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence measurements (PL), and X-ray photoelectron spectroscopy (XPS). The $Cd_{0.8}Zn_{0.2}S$ particles were scattered on the surface of $K_4Nb_6O_{17}$, and had a relatively uniform size distribution around 50 nm. The absorption edge of $K_4Nb_6O_{17}$ was shifted to the visible light region and the recombination of photo-generated electrons and holes suppressed after $Cd_{0.8}Zn_{0.2}S$ loading. The $Cd_{0.8}Zn_{0.2}S$(25 wt %)/$K_4Nb_6O_{17}$ composite possessed the highest photocatalytic activity for hydrogen production under visible light irradiation, evolving 8.278 mmol/g in 3 h. Recyclability tests were performed, and the composite photocatalysts were found to be fairly stable. The mechanism of charge separation between the photogenerated electrons and holes at the $Cd_{0.8}Zn_{0.2}S/K_4Nb_6O_{17}$ composite was discussed.

Microstructure and Mechanical Properties of Al-5%Mg-1%Mn-x%Zn Alloys (Al-5%Mg-1%Mn-x%Zn합금의 미세조직 및 기계적 성질)

  • Kim, Jeong-Min;Seong, Ki-Dug;Yoo, Jung-Hoon;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • Effects of Zn and Zr additions on the microstructure and mechanical properties of Al-5%Mg-1%Mn alloys were investigated. As Zn content increased in the Al-Mg-Mn-Zn alloys, the tensile strength and ductility of as-cast alloys rather decreased while the tensile strength of the heat-treated alloys significantly increased mainly due to the precipitation of fine $MgZn_2$ phases. Small amount of Zr was added to the 3%Zn alloy to further enhance the mechanical properties, and it appeared to increase the strength and ductility, especially in as-cast state.

The Development of a Rainfall Correction Technique based on Machine Learning for Hydrological Applications (수문학적 활용을 위한 머신러닝 기반의 강우보정기술 개발)

  • Lee, Young-Mi;Ko, Chul-Min;Shin, Seong-Cheol;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • For the purposes of enhancing usability of Numerical Weather Prediction (NWP), the quantitative precipitation prediction scheme by machine learning has been proposed. In this study, heavy rainfall was corrected for by utilizing rainfall predictors from LENS and Radar from 2017 to 2018, as well as machine learning tools LightGBM and XGBoost. The results were analyzed using Mean Absolute Error (MAE), Normalized Peak Error (NPE), and Peak Timing Error (PTE) for rainfall corrected through machine learning. Machine learning results (i.e. using LightGBM and XGBoost) showed improvements in the overall correction of rainfall and maximum rainfall compared to LENS. For example, the MAE of case 5 was found to be 24.252 using LENS, 11.564 using LightGBM, and 11.693 using XGBoost, showing excellent error improvement in machine learning results. This rainfall correction technique can provide hydrologically meaningful rainfall information such as predictions of flooding. Future research on the interpretation of various hydrologic processes using machine learning is necessary.

Preparation of Zinc Oxide by Hydrothermal Precipitation Method and their Photocatalytic Characterization (수열합성법에 의한 산화아연의 제조와 광분해 특성)

  • Jeong, Sang-Gu;Na, Seok-Eun;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.808-814
    • /
    • 2012
  • Photocatalytic zinc oxide powders were prepared from precursor zinc acetate and ammonia solution at elevated temperature, $80^{\circ}C$, by hydrothermal precipitation method. The effect of operating parameters, pH of ammonia solution and concentration of zinc acetate solution, on the characteristics of zinc oxide powders were experimentally examined. Zinc oxide powders prepared at the conditions of pH 11, zinc acetate concentration of 1.0 M, precipitation temperature of $80^{\circ}C$, showed smallest average particle diameter of $3{\mu}m$. SEM and XRD analysis confirmed that prepared zinc oxide has hexagonal rods structure, and Anatase type crystallinity. In addition, DRS and PL analysis showed that the zinc oxide has activity at the range of 200~400 nm of UV light. And the zinc oxide decomposed 57% of a food-color stamp Brilliant blue FCF for 3 hours under the UV radiation.

Theoretical Study of Boric Acid Determination In Nickel Plating Solution (니켈 도금액의 붕산분석에 관한 연구)

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.4 no.1
    • /
    • pp.5-15
    • /
    • 1971
  • "Rapid Determination of Boric Acid in Nickel Plating Solution" by the addition of Na$_2$C$_2$O$_4$ and thus preventing the precipitation of i(OH)$_2$ during titiration , has previously been reported. In this paper, the exact amount of glycerine and the complexing possibility of oxalate with nickel has been determined by measn of conductivity titrations. This experimental work has been supported by the mathematical application of the Debye-Huckel and mass action equitions as well as statistical analysis. The results were ; (1) Fro determining boric acid in nickel plating solution, 20 ml of 400ml/ι glycerine was sufficient, since 97% of the H$_3$BO$_3$ was dissoicated by this addition. (2) In the absence of Na$_2$C$_2$O$_4$ the continious precipitation of Ni(OH)$_2$ during titration with NaOH even past end -point for boric acid determination resulted in considerable anlaytical error. (3) In the presence of Na$_2$C$_2$O$_4$ during titration , Ni++ combined with C$_2$O$_4$-to form NiC$_2$O$_4$. The solution with this precititate of very fine, colloidal , trantsparent particles, remained quite clear for approximately 2 hours. Therefore it was shown that the presence of Na$_2$C$_2$O$_4$ prevents the formation of gross Ni(OH)$_2$ precititation by forming NiC$_2$O$_4$ instead of a complex salt with Ni++ , which did not interfere with the visible determination of the end point for boric acid with NaOH titation. This observous may be interpreted in the light of the previously published solubility ratio for NiC$_2$O$_4$ and Ni(OH)$_2$, 0.3mg/100g H$_2$O(25$^{\circ}C$), respectively. Precipitation of the less soluble , albeit transparent salt, NiC$_2$O$_4$ precluded therefore the precipitation of the Ni(OH)$_2$ salt.

  • PDF

How do diverse precipitation datasets perform in daily precipitation estimations over Africa?

  • Brian Odhiambo Ayugi;Eun-Sung Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.158-158
    • /
    • 2023
  • Characterizing the performance of precipitation (hereafter PRE) products in estimating the uncertainties in daily PRE in the era of global warming is of great value to the ecosystem's sustainability and human survival. This study intercompares the performance of different PRE products (gauge-based, satellite and reanalysis) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over diverse climate zones in Africa and identifies regions where they depict minimal uncertainties in order to build optimal maps as a guide for different climate users. This is achieved by utilizing various techniques, including the triple collection (TC) approach, to assess the capabilities and limitations of different PRE products over nine climatic zones over the continent. For daily scale analysis, the uncertainties in light PRE (0.1 5mm/day) are prevalent over most regions in Africa during the study duration (2001-2016). Estimating the occurrence of extreme PRE events based on daily PRE 90th percentile suggests that extreme PRE is mainly detected over central Africa (CAF) region and some coastal regions of west Africa (WAF) where the majority of uncorrected satellite products show good agreement. The detection of PRE days and non-PRE days based on categorical statistics suggests that a perfect POD/FAR score is unattainable irrespective of the product type. Daily PRE uncertainties determined based on quantitative metrics show that consistent, satisfactory performance is demonstrated by the IMERG products (uncorrected), ARCv2, CHIRPSv2, 3B42v7.0 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0, and REGEN_ALL (gauge) during the study period. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage for different stakeholders.

  • PDF

Development of the Best Spherical Interpolation Method for Estimating Potential Natural Vegetation Distribution of the Globe (지구(地球)의 잠재자연식생분포(潜在自然植生分布)를 추정(推定)하기 위한 최적구면보간법(最適球面補間法)의 개발(開發))

  • Cha, Gyung Soo;Ochiai, Kamiya
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • As the first step to estimate the potential natural vegetation distribution of the globe, the best spherical interpolation method was developed to the temperature and precipitation which have close relation to the distribution pattern of world natural vegetation. For developing the interpolation method, a named Light Climatic Dataset composed of 1,060 stations around the globe was randomly divided into halves of feeding side and target side. The discrepancy between the observed and estimated values at the target stations was compared with combinations of parameters and methods. The estimated values were calculated to each combination which is all-out, constant radius and constant station methods in the selection of the feeding stations, n square reciprocal and negative exponential functions in weighting function of distance between feeding stations and each target, and oval weighting in direction of the feeding stations from each target. As a result, it turned out that the spherical interpolation with negative exponential weighting function fed from the constant radius stations ovally weighed yields the best estimates both for temperature and for precipitation. The parameters for temperature are $30^{\circ}$ in constant radius, 0.78 in negative exponential function and 0.4 in oval weighting, and for precipitation are $30^{\circ}$, 0.53 and 0.4, respectively.

  • PDF

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.