• 제목/요약/키워드: light precipitation

검색결과 164건 처리시간 0.033초

1 묘포의 광도및 토양함수량이 인삼의 생육에 미치는 영향 (Effect of Light Intensity and Soil Water Regimes on the Growth of Ginseng (Panax ginseng C. A. Meyer) Seedling.)

  • 이성식;이종화;박훈
    • Journal of Ginseng Research
    • /
    • 제8권1호
    • /
    • pp.65-74
    • /
    • 1984
  • This experiment was carried out to study the effects of light intensity and soil water regimes on the growth of ginseng seedling. The results were as follows: 1. The maximum light intensity and optimum temperature in 1,le photosynthesis of ginseng seedling were 10,000 lux and 23 $^{\circ}C$. Respiration rate was increased at high temperature. 2. Air and soil temperature under the shading were increased as the increase of light intensity but soil water contents were decreased as the increase of light intensity, whereas air and soil temperature were decreased as the increase of precipitation under the shade b5: soil water contents were increased as the increase of precipitation under the shade. 3. The higher the transmittance of the shade, the greater the specific leaf weight (S.L.W.) and stomatal density. In contrast, however, the contents of total chlorophyll, chlorophyll a and b, and stomatal length was decreased. There was no any significant difference light intensity of the a/b ratio of chlorophyll. 4. The highest photosynthesis was occurred in ginseng leaves grown under the shade 5% L.T.R. and net photosynthesis rates increased with increasing soil water contents. 5. Optimum condition for usable seedling yield were 5% L.T.R. and 3.3% precipitation under the shade. Useless seedling increased with increasing precipitation under the shade.

  • PDF

한반도 중부지역에서 약한 강수에 미치는 도시화 효과 (Effect of urbanization on the light precipitation in the mid-Korean peninsula)

  • 은승희;채상희;김병곤;장기호
    • 대기
    • /
    • 제21권3호
    • /
    • pp.229-241
    • /
    • 2011
  • The continuous urbanizations by a rapid economic growth and a steady increase in population are expected to have a possible impact on meteorology in the downwind region. Long-term (1972~2007) trends of precipitation have been examined in the mid-Korean peninsula for the westerly condition only, along with the sensitivity simulations for a golden day (11 February 2009). During the long-term period, both precipitation amount (PA) and frequency (PF) in the downwind region (Chuncheon, Wonju, Hongcheon) of urban area significantly increased for the westerly and light precipitation ($PA{\leq}1mm\;d^{-1}$) cases, whereas PA and PF in the mountainous region (Daegwallyeong) decreased. The enhancement ratio of PA and PF for the downwind region vs. urban region remarkably increased, which implies a possible urbanization effect on downwind precipitation. In addition, the WRF simulation applied for one golden day demonstrates enhanced updraft and its associated convergence in the downwind area (about 60 km), leading to an increase in the cloud mixing ratio. The sensitivity experiments with the change in surface roughness demonstrates a slight increase in cloud water mixing ratio but a negligible effect on precipitation in the upwind region, whereas those with the change in heat source represents the distinctive convergence and its associated updraft in the downwind region but a decrease in liquid water, which may be attributable to the evaporation of cloud droplet by atmospheric heating induced by an increase in an anthropogenic heat. In spite of limitations in the observation-based analysis and one-day simulation, the current result could provide an evidence of the effect of urbanization on the light precipitation in the downwind region.

침전 반응에 의한 가시광 광촉매 Bismuth Vanadate 합성 (Synthesis of Bismuth Vanadate as Visible-light Photocatalyst by Precipitation Reaction)

  • 김상문;이재용;문추연;이헌수
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.630-635
    • /
    • 2011
  • Bismuth vanadate($BiVO_4$) with monoclinic phase as photocatalyst under visible light is synthesized by precipitation reaction in hot water. Properties such as crystal phase, particle morphology and visual light absorbance as well as the effects of thermal treatment for $BiVO_4$ powders are investigated. $BiVO_4$ powders with both single monoclinic phase and 0.2 ${\mu}m$ in particle size are synthesized when precipitate is stirred in water for 5 h at 95$^{\circ}C$. Well-developed monoclinic phase and light absorption property under 535 nm are observed as a result of thermal treatment for 1 h at 300$^{\circ}C$ after precipitation reaction in water for 5 h at 95$^{\circ}C$. Degradation of monoclinic crystal is found in firing above 350$^{\circ}C$, and particle growth is occurred in firing above 550$^{\circ}C$.

마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선 (The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm)

  • 장지연;이용희;최현주
    • 대기
    • /
    • 제30권4호
    • /
    • pp.335-346
    • /
    • 2020
  • Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.

Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles

  • Ying, Yuet Lee;Pung, Swee Yong;Ong, Ming Thong;Pung, Yuh Fen
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.437-447
    • /
    • 2018
  • Visible-light-driven wide bandgap semiconductor photocatalysts were commonly developed via doping or coupling with another narrow bandgap metal oxide. However, these approaches required extra processing. The aim of study was to evaluate the photocatalytic performance of narrow bandgap $WO_x$ nanoparticles. A mixture of $WO_2$ and $WO_3$ nanoparticles were synthesized using solution precipitation technique. The photodegradation of RhB by these nanoparticles more effective in UV light than in visible light. In antibacterial susceptibility assay, $WO_x$ nanoparticles demonstrated good antibacterial against Gram-positive bacteria. The cell wall of bacterial was the main determinant in antibacterial effect other than $W^{4+}/W^{6+}$ ions and ROS.

영동 대설과 관련된 낮은 층운형 구름의 위성관측 (Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region)

  • 권태영;박준영;최병철;한상옥
    • 대기
    • /
    • 제25권4호
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

연무 종류별 강수 발생시간 관측 특성 및 에어로졸-강수 연관성 분석 (Observed Characteristics of Precipitation Timing during the Severe Hazes: Implication to Aerosol-Precipitation Interactions)

  • 은승희;장문정;박성민;김병곤;박진수;김정수;박일수
    • 대기
    • /
    • 제28권2호
    • /
    • pp.175-185
    • /
    • 2018
  • Characteristics of precipitation response to enhanced aerosols have been investigated during the severe haze events observed in Korea for 2011 to 2016. All 6-years haze events are classified into long-range transported haze (LH: 31%), urban haze (UH: 28%), and yellow sand (YS: 18%) in order. Long-range transported one is mainly discussed in this study. Interestingly, both LH (68%) and YS (87%) appear to be more frequently accompanied with precipitation than UH (48%). We also found out the different timing of precipitation for LH and YS, respectively. The variations of precipitation frequency for the LH event tend to coincide with aerosol variations specifically in terms of temporal covariation, which is in contrast with YS. Increased aerosol loadings following precipitation for the YS event seems to be primarily controlled by large scale synoptic forcing. Meanwhile, aerosols for the LH event may be closely associated with precipitation longevity through changes in cloud microphysics such that enhanced aerosols can increase smaller cloud droplets and further extend light precipitation at weaker rate. Notably, precipitation persisted longer than operational weather forecast not considering detailed aerosol-cloud interactions, but the timescale was limited within a day. This result demonstrates active interactions between aerosols and meteorology such as probable modifications of cloud microphysics and precipitation, synoptic-induced dust transport, and precipitation-scavenging in Korea. Understanding of aerosol potential effect on precipitation will contribute to improving the performance of numerical weather model especially in terms of precipitation timing and location.

최근 30년간 한반도 일 강수강도의 지역적 특성 (The Regional Characteristics of Daily Precipitation Intensity in Korea for Recent 30 Years)

  • 김은희;김맹기;이우섭
    • 한국지구과학회지
    • /
    • 제26권5호
    • /
    • pp.404-416
    • /
    • 2005
  • 이 연구는 최근 30년 동안 21개 지상관측소 일강수량 자료를 사용하여 한반도의 강수일수 및 강수강도의 지역성 및 계절성을 조사하였다. 일강수량 80 mm를 기준으로 다우와 소우로 나누어 그 특성을 조사하였으며, 강수일수 및 강도의 일차 선형경향도 함께 연구하였다. 호남 지방에서 소우에 의한 강수일수는 모든 계절에서 다른 지역에 비해 많으며, 특히 가을과 겨울철의 기여도가 상대적으로 컸다. 그러나 다우에 의한 강수일수는 대구를 중심으로 한 영남 지역에서 매우 적은 것으로 나타났다. 남해안 지방에서 강수량은 많고 강수일수가 적어 강수강도가 모든 계절에서 가장 크게 나타났으며, 연강수량에 대한 기여도는 다우와 소우 모두 다른 지역에 비해 크게 나타났다. 최근 30년간 대부분 지역에서 연강수량은 증가하는 선형경향을 보였는데, 대부분 다우에 의한 영향으로 나타났다. 한반도의 연 강수일수는 전반적으로 감소하는 선형경향을 보이지만, 다우에 의한 연 강수일수는 증가하는 선형경향을 보였다. 특히 충청과 경기지방에서 강수강도의 선형경향이 유의한 지역이 다수 발견되었는데, 이는 이 지역이 집중호우에 대한 위험도가 적지 않은 지역임을 말해주는 것이다.

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

Space-selective Precipitation and Control of Functional Crystals in Glasses by a Femtosecond Laser

  • Qiu, Jianrong;Zhu, Bin;Dai, Ye
    • 세라미스트
    • /
    • 제10권3호
    • /
    • pp.91-97
    • /
    • 2007
  • Femtosecond laser micro-processing received much attention in the past decade. The nature of ultra-short light-matter interaction permits femtosecond laser to overcome the diffraction limit and realize precise micro-processing. The ultrahigh light intensity of the femtosecond laser allows sapece-selective microscopic modifications to materials based on multiphoton processes. In this paper, we review our recent research development on space-selective precipitation and control of functional crystals in glasses by an infrared femtosecond laser. The technique will open new possibilities in the fabrication of micro-optical components with various optical functions.

  • PDF