• Title/Summary/Keyword: light petroleum products

Search Result 12, Processing Time 0.028 seconds

An Analysis of the Distribution Structure and Logistics System of Light Petroleum Products (석유제품의 유통구조와 물류체계 분석 - 경질제품을 대상으로 -)

  • 이희연;최윤선
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.5-24
    • /
    • 2002
  • The purpose of this study is to analyze the distribution structure and the logistics system of light petroleum products from the spatial perspectives. The consumption structure of petroleum products has been changed since the mid 1980s. The growth rate of consumption for light products has been much faster than those of heavy products. The distribution structure of the petroleum products is hierarchically established by refining companies, agencies, and gas stations. The petroleum products agencies are distributed unevenly over the country, and the number of gas stations per one petroleum agency are very differentiated by the region. The light products are directly transported from refining factories to oil storages and then are carried to gas stations. According to the locational characteristics, oil storages which play a key role in the logistics system are categorized into three type. The first type is demand-oriented oil storages which are located near or in the large cities to supply the light petroleum products. The second type is harbors-oriented oil storages which are located within harbors. The third type is railway-oriented oil storages which are located along railway stations. In this study, the thresholds of one oil storage and one gas station are calculated based on the size of supply territory for each oil storage. The average number of population demand that allow a oil storage to stay in business is 1.9 million and average number of cars are 477,200.

  • PDF

Rapid Identification of Petroleum Products by Near-Infrared Spectroscopy

  • 정호일;최혁진;구민식
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1021-1025
    • /
    • 1999
  • Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of six typical petroleum products such as light straight-run (LSR), naphtha, kerosine, light gas oil (LGO), gasoline, and diesel. The spectral features of each product were reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information for discrimination. For discrimination, principal component analysis (PCA) combined with Mahalanobis distance was used to identify each petroleum product from NIR spectra. The results showed that each product was accurately identified with an accuracy over 95%. Most noticeably, LSR, kerosine, gasoline, and diesel samples were predicted with identification accuracy of 99%. The overall results ensure that a portable NIR instrument combined with a multivariate qualitative discrimination method can be efficiently utilized for rapid and simple identification of petroleum products. This is especially important when local at-site measurements are necessary, such as accidental petroleum leakage and regulation of illegal product blending.

Analysis of Total Petroleum Hydrocarbon in Domestic Distribution Petroleum (국내 유통 중인 석유제품 내 석유계 총 탄화수소화합물(TPH) 분석)

  • Lim, Young-Kwan;Kim, Jeong-Min;Kim, Jong-Ryeol;Kwon, Min-Jeong;Lee, Kyoung-Heum;Ryu, Seong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.546-550
    • /
    • 2016
  • Over 60~70% of the domestic soil contamination have occurred by petroleum products. B T E X including benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon (TPH) have to be inspected for the contaminated soil by petroleum products. An accurate contamination analysis is necessary to estimate the are of contaminated soil and also establish an appropriate purification scheme. In this study, we analyzed a sectional TPH pattern for current domestic distributed petroleum products. Also, the TPH content was analyzed by compensating the defect of current Korea standard analytic methods for soil where the analytic range is just for $C_8{\sim}C_{40}$. The light distillate petroleum products such as gasoline and solvent 1 showed the maximum of 85% difference in the TPH content between the standard analytic and improved methods.

Energy conversion of petroleum coke : CO2 gasification (석유 코크스의 에너지 전환 : CO2 가스화)

  • Kook, Jin-Woo;Gwak, In-Seop;Lee, See-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.255-257
    • /
    • 2014
  • The installation of light oil facilities or delayed cokers seems to be inevitable in the oil refinery industry due to the heavy crude oil reserves and the increased use of light fuels as petroleum products. Petroleum coke is a byproduct of oil refineries and it has higher fixed carbon content, higher calorific value, and lower ash content than coal. However, its sulfur content and heavy metal content are higher than coal. In spite of disadvantages, petroleum coke might be one of promising resources due to gasification processes. The gasification of petroleum coke can improve economic value of oil refinery industries by handling cheap, toxic wastes in an environment-friendly way. In this study, $CO_2$ gasification reaction kinetics of petroleum coke, various coals and mixing coal with petroleum coke have investigated and been compared by using TGA. The kinetics of $CO_2$ gasification has been performed with petroleum coke, 3 kinds of bituminous coal [BENGALLA, White Haven, TALDINSKY], and 3 kinds of sub-bituminous coal [KPU, LG, MSJ] at various temperature[$1100-1400^{\circ}C$].

  • PDF

Interpretation of Contaminated Soil by Complex Oil (토양 내 복합유종에 의한 오염 해석 연구)

  • Lim, Young-Kwan;Kim, Jeong-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.

Liquefaction Characteristics of PP by Pyrolysis (PP의 열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Lee, Bong-Hee;Park, Su-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.

Distribution Characteristics of Pyrolysis Products of Polyethylene (폴리에틸렌 열분해 생성물의 분포 특성)

  • Lee, Dong-Hwan;Choi, Hong-Jun;Kim, Dae-Su;Lee, Bong-Hee
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • To investigate the characteristics of pyrolysis for LDPE, LLDPE and HDPE, the low temperature pyrolysis was carried out in the range of 425 to $500^{\circ}C$ for 35 to 65 min. The liquid products formed during pyrolysis were classified into gasoline, kerosene, light oil and wax according to the distillation temperatures based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. TGA experiments for three PE samples showed that the onset temperature of pyrolysis increased with increasing heating rate, and the onset temperature of pyrolysis at a fixed heating rate was in the order of LDPE$475^{\circ}C$. Yields of gasoline and kerosene were highest at $450^{\circ}C$, 65 min and decreased slightly at above $475^{\circ}C$.

Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine (이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구)

  • Lee, Seokhwan;Jang, Youngun;Kim, Hoseung;Kim, Taeyoung;Kang, Kernyong;Lim, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

Product Distribution Characteristics of High-Impact Polystyrene Depolymerization by Pyrolysis (열분해에 의한 내충격 폴리스티렌 해중합 생성물의 분포 특성)

  • Lee, Bong-Hee;Yu, Hong-Jeong;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • To recycle collected high-impact polystyrene (HIPS) wastes as liquid fuel, depolymerization characteristics of HIPS by pyrolysis was studied. The effects of temperature and time on the pyrolysis of HIPS were investigated. The depolymerization temperature and activation energy of HIPS pyrolysis increased with increasing heating rate. In general, conversion and liquid yield gradually increased with pyrolysis temperature and pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and heavy oil according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HIPS pyrolysis was in the order of gasoline》heavy oil〉kerosene〉light oil. Especially 51${\pm}$6 wt% of HIPS treated was obtained as gasoline.