• Title/Summary/Keyword: light olefin

Search Result 16, Processing Time 0.023 seconds

Preparation of Fe/$Al_2O_3$ Granules for Conversion of Syngas to Light Olefins by Fischer-Tropsch Reaction (합성가스에서 경질올레핀 제조를 위한 피셔-트롭시 반응용 구형 철-알루미나 촉매 합성)

  • Lee, Dong-Joon;Jung, Kwang-Deog;Yoo, Kye-Sang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.333-336
    • /
    • 2010
  • Fe/$Al_2O_3$ granules with various compositions were prepared by combining sol-gel with oil drop method for Fishcer-Tropsh reaction to produce light olefin from synthesis gas. The granules was characterized and employed as a catalyst in the reaction. The surface area of granules was decreased with increasing Fe concentration. Especially, granule with 1.5 of Al/Fe ratios showed the highest CO conversion. However, the olefin selectivity was hardly affected by Al/Fe ratio. K concentration of granule gave a significant effect on catalytic performance. Initial CO conversion and olefin selectivity were increased with K concentration. However, the catalyst with higher K concentration was deactivated rapidly.

Photocycloaddition Reaction of 1,2-Bispyrazylethylene to Tetracyanoethylene

  • Shim, Sang-Chul;Shim, Hyun-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.123-126
    • /
    • 1980
  • Benzene solution of trans-1,2-bispyrazylethylene and electron deficient olefin, tetracyanoethylene, as a ${\pi}$-acceptor gave 1,2-bispyrazyl-3,3,4,4-tetracyanocyclobutane, a 2${\pi}$ + 2${\pi}$ cycloaddition product, on irradiation with 350 nm UV light. Fluorescence studies revealed the reaction to proceed through a singlet exciplex. The fluorescence of trans-1,2-bispyrazylethylene was quenched very efficiently by tetracyanoethylene with the quenching constant of 1.6 ${\times}$ 10$^{10}$M$^{-1}$s$^{-1}$ while electron rich olefin, tetramethylethylene, did not quench the fluorescence of bispyrazylethylene.

Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels (기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향)

  • 박종범;최희명;이형승;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant (올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과)

  • Wee, Jung-Ho;Choi, Kyoung-Sik;Kim, Jeong-In;Lee, Sang-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.679-689
    • /
    • 2009
  • Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Comparison Analysis on Characteristics and Components of Various Waste Plastic Pyrolysis Oils by Vacuum Distillation Method (감압증류를 통해 분획된 폐플라스틱 열분해유의 특성평가와 구성성분 비교분석 연구)

  • Hwayeon Jeon;Cheol Hwan Jeon;Sung Joon Park;Jae Woo Lee;Jae-kon Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.262-271
    • /
    • 2023
  • Globally, the amount of waste plastics has been occurring to environmental problems. As a result, it is necessary to research methods that utilize waste plastic pyrolysis oil (WPPO) produced by pyrolysis. One such method being studied is utilizing WPPO as a naphtha feedstock. In this study, five types of WPPO were analyzed to determine whether they can be used as raw materials for naphtha. Because of their wide boiling point range, the WPPOs were fractionated into light and heavy fractions through vacuum distillation, and the separation and purification techniques were analyzed using GC-VUV to determine the content of paraffin, olefin, and other compounds. All WPPOs showed high olefin content regardless of the source and fraction. Aromatic and paraffin content varied depending on the source, and oxygen and other compounds also varied significantly by source and fraction. In addition, the light fraction showed a carbon distribution similar to that of naphtha, whereas the heavy fraction showed a carbon distribution of C11 ~ C14. In conclusion, additional processes and raw material selection are required to utilize waste plastic pyrolysis oil as a raw material for naphtha.

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes (경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향)

  • Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.128-134
    • /
    • 2016
  • Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.

Effects of Inhibition on Formation and Growth of Polymer in Butadiene Extraction Unit (Butadiene Extraction Unit 내의 Polymer 생성 억제 효과)

  • Im, Gyeong
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • There are many methods of obtaining butadiene described in the literature. In the america it is produced largely from petroleum gases, i.e., by catalytic dehydrogenation of butene of butene-butane mixtures. Butadiene can be recovered from the $C_4$ residue of an olefin plant by distilling off a fraction containing most of the butadiene, catalytically hydrogenating the higher acetylenes to olefins and separating the product from other olefins and isobutane by extraction. Also it can be obtained by cracking naphtha and light oil. Among the individual dienes of commercial importance, 1, 3-butadiene is of first importance. It is used primarily for the production of polymers.In the present paper, it was investigated for a effect of the formation and the growth inhibition of popped corn polymer in butadiene extraction unit. As a result of study, inhibitors, $NaNO_2$ and TBC were good effective for inhibition of the formation and growth in popcorn polymer. The rational formula of popcorn polymer obtained was $(C_4H_6)_x$.

  • PDF

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF

Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction (DTO 반응에서 촉매수명과 경질 올레핀 선택도에 미치는 SAPO-34의 산 처리 효과)

  • Choi, Ki-Hwan;Lee, Dong-Hee;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • Effects of the post-acid treatment of SAPO-34 sample by hydrochloric acid were investigated to enhance the catalytic performance in DTO reaction. Uniformly sized SAPO-34 samples with cubic-like morphology were prepared by hydrothermal method using TEAOH and DEA as the structure directing agents. It was modified in terms of the HCl concentration and treating time. As a result, the total surface area and micropore volume for the well modified samples increased and the total acid site was somewhat decreased along with the erosion of the external surface. Especially, the catalytic lifetime and light olefins selectivity for acid treated SAPO-0.2 M (3 h) samples were considerably enhanced compared with those of untreated SAPO-34 samples. It indicates that the deactivation by coke formation proceeds mainly at the pore entrance on the external surface. Therefore, the acid treatment was confirmed to be a simple method which can significantly improve the catalytic performance by modifying the external surface of SAPO-34 catalyst.