• Title/Summary/Keyword: light frame

Search Result 433, Processing Time 0.025 seconds

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Extraction of Design Concepts of Light for the Architectural Interior Space - Focused on the plastic character of space as visual phenomenon by Light - (실내건축 공간 디자인을 위한 '빛' 관련 디자인개념 추출 - 빛에 의한 시지각적 현상(現象)으로서의 공간 조형성을 중심으로 -)

  • Yoo, Young-Heui
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.115-122
    • /
    • 2007
  • The purpose of this study is to extract design concepts, especially in relation to light, as a part of extracting design concepts in architectural interior design. This study consists of two steps. Firstly, appropriate design concepts are extracted from various design characteristics. Secondly, these concepts are classified in the frame of other components of architectural space, as well as in the frame of the plastic characteristics of light. Various design characteristics were analyzed, those of which relating to the plastic character of space, namely, visual phenomenon. As a result of the analysis, 32 concepts were extracted. These concepts, in the frame of other components of architectural space (space, form, structure, opening of space, material, color, inside & outside relationship), were classified, as well as In the frame of the plastic character of Light (transparency, perception, direction, ornament). As the results of this research, the suggested design concepts will be a study material, available to the interior designers as well as students who want to utilize the organized study concepts.

Static and Fatigue Analysis of Bogie Rotating Frame for Light Rail Train (경량전철 대차 선회프레임의 정적강도와 피로특성 분석)

  • 구정서;조현직;송달호
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.253-260
    • /
    • 2001
  • Rotating bogie frame will be used in the bogie for the Light Rail Train being developed. In development of the bogie, analyzed were the structural strength and fatigue characteristics of the rotating bogie frame. Defined load cases were applied for the analysis. No part of the rotating bogie frame is subjected to stress beyond the fatigue endurance limits of the material used when grinding the weldment of the lower plate link bend. It is concluded that the rotating bogie frame is considered safe in the view of the structural strength.

  • PDF

Design and Manufacture of CFRP Pipe for Bicycle Frame (자전거 프레임용 CFRP 파이프 설계제작)

  • 이범성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.130-137
    • /
    • 2003
  • The pipe of CFRP for bicycle frame is designed and made for light weight of bicycle and then its suitability to bicycle frame is verified by comparing the other material i.e. steel, Cr-Mo steel, Al alloy pipe for bicycle frame. The pipe of CFRP is laminated to [0/$\pm$45]$_T$ and made by tape winding method and then its degree of light weight is evaluated by comparing the other pipes which is made by steel etc.

Construction quality issues in performance-based wind engineering: effect of missing fasteners

  • van de Lindt, John W.;Dao, Thang Nguyen
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-234
    • /
    • 2010
  • In light-frame wood construction, missing roof-sheathing fasteners can be a relatively common occurrence. This type of construction makes up the vast majority of the residential building stock in North America and thus their performance in high winds, including hurricanes, is of concern due to their sheer number. Construction quality issues are common in these types of structures primarily because the majority are conventionally constructed and unlike steel and reinforced concrete structures, inspection is minimal except in certain areas of the country. The concept of performance-based wind engineering (PBWE), a relatively new paradigm, relies on the assumption that building performance under wind loads can be accurately modeled. However, the discrepancy between what is designed (and modeled) and what is built (the as-built) may make application of PBWE to light-frame wood buildings quite difficult. It can be concluded from this study that construction quality must be controlled for realistic application of PBWE to light-frame wood buildings.

A Study on the Development of the Split-Type Carbon Composite Bicycle Frames (분할형 탄소복합재 자전거 프레임 개발에 관한 연구)

  • Park, Chan Gon;Choi, Young;Kang, Bong Yong;Kim, Eun Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2017
  • Finite element analysis was performed for a split-type CFRP bicycle frame, which was designed to apply a compression molding process with carbon fiber prepreg for a conventional bicycle. An epoxy adhesive material for joining the frames was selected by the extent of stress at joint interfaces. The split-type bicycle frame was then formed and its weak parts examined by the boundary conditions according to reliability tests. The results verified the reliability of the bicycle frame after modification of these weak parts. The finished product was manufactured by using this developed split-type bicycle frame.

Evaluation of Fatigue Endurance for an Ultra-light-weight Inline Skate Frame (초경량 인라인 스케이트 프레임의 피로 내구성 평가)

  • Lee, Se-Yong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • In order to evaluate fatigue endurance for an ultra-light weight inline skate frame, FEM analysis was performed. Tensile properties and a S-N curve were determined through tensile and fatigue tests on a modified Al-7075+$S_c$ alloy. The yield and ultimate tensile strengths were 553.3 MPa and 705.5 MPa, respectively. The fatigue endurance limit of this alloy was 201.2 MPa. For evaluating the fatigue endurance of the inline skate frame, the S-N data were compared with the stress analysis results through FEM analysis of the frame. The maximum Von-Mises stress of the frame was determined 106 MPa through FEM analysis of the frame, assuming that the rider weight is 75 Kg. Conclusively, on the basis of fatigue limit, the inline skate frame has a safety factor of approximately 2.0.

Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique (최적화 기법을 이용한 한국형 소형전술차량의 경량설계)

  • Suh, Kwonhee;Song, Bugeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

A Study on The Load Test Method and Result For Bogie Frame of New LRT (신형 경전철차량 대차프레임 하중시험 방법 및 결과 고찰)

  • Kim, Weon-Kyong;Won, Si-Tae;Jeon, Chang-Seong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1679-1688
    • /
    • 2008
  • Recently, the bogie frame weight of Light Rail Transit system has been reduced in order to save energy and materials. However, this light weighted vehicle structure is very important to verify the fatigue strength at the development stage. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these components, the bogie frame is most significant component subjected to the whole vehicle and passenger loads. In this study, the bogie frame for the New LRT power car is evaluated to the static and fatigue strength. And the evaluation method is used the LRT Performance Test Standards Specification throughout the FEM analysis and static load test. The static and fatigue test results for the LRT bogie frame of power car has been appeared very safety and stable for the design load conditions.

  • PDF

A study on the extremely light trailer frame using topology optimization technique (위상최적설계기법을 이용한 초경량 트레일러 연구)

  • Yoon, Min-Su;Jang, Gang-Won;Park, Jae-Ha
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.410-411
    • /
    • 2008
  • A topology optimization technique to develop extremely light trailer frame structure is performed due to the strong needs of the customers and makers owing to high level of oil price. First, the overall layout of the frame is derived using topology optimization and then, final specification is also derived utilizing DOE optimization technique for mass product.

  • PDF