• Title/Summary/Keyword: light elements

Search Result 838, Processing Time 0.028 seconds

A Comparative Study on the Characteristics of Costume Colors of Korea. China. Japan in the 20th Century (근.현대에 있어서 한.중.일 삼국의 복식색채 특성 비교)

  • Lee, Jee-Hyun;Kim, Young-In;Kim, Hee-Yeon
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.9 s.109
    • /
    • pp.98-111
    • /
    • 2006
  • The objective of this research is to examine the commonness and differences of Korean, Chinese and Japanese costume colors of modern and present ages. The result of this study showed that modern China and Japan had quick influx speed of Western culture. Dissimilarly, modern Korea kept conception of colors from Chosun periods that show the high frequency of 'Five Elements Colors' and neutral colors in Red, Yellow and Purple Blue. Today, the costumes of China, Korea and Japan use similar tones of color but each country approached in different selections of achromatic colors; Korean prefers color in Yellow Red, Purple, and Chinese in Green Yellow, Green and Japanese in Purple Blue. Light greyish and pale toned Yellow Red and grayish tone have increased in modern Chinese and Japanese costumes. Also both countries have corresponding assumptions in using color of Red in strong tone. The analysis of color and tone distribution showed that, Japanese costume colors in modern and present times have correlative number of use as in Western culture. Traditionally, Japan has least notion of using 'Five Elements Colors' which only gives minor changes by convergence of Western color culture. In other side, China had developed in color rather than tone compares to Korea and Japan by using many of the Red color of strong, vivid and deep tones which made red distinguishing color of China. Japan continues to use of low chroma colors and became a characteristic in modern and present day, also they use an abundance of color in Yellow Red, purple Blue. Korea has a higher frequency showing in light, bright tones of color distinctively compares to China and Japan.

Preprocessing Methods and Analysis of Grid Size for Watershed Extraction (유역경계 추출을 위한 DEM별 전처리 방법과 격자크기 분석)

  • Kim, Dong-Moon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Recent progress in state-of-the-art geospatial information technologies such as digital mapping, LiDAR(Light Detection And Ranging), and high-resolution satellite imagery provides various data sources fer Digital Elevation Model(DEM). DEMs are major source to extract elements of the hydrological terrain property that are necessary for efficient watershed management. Especially, watersheds extracted from DEM are important geospatial database to identify physical boundaries that are utilized in water resource management plan including water environmental survey, pollutant investigation, polluted/wasteload/pollution load allocation estimation, and water quality modeling. Most of the previous studies related with watershed extraction using DEM are mainly focused on the hydrological elements analysis and preprocessing without considering grid size of the DEMs. This study aims to analyze accuracy of the watersheds extracted from DEMs with various grid sizes generated by LiDAR data and digital map, and appropriate preprocessing methods.

Analyzing Therapeutic Design Characteristics in the Indoor Atrium of the Outpatient Areas in Children's Hospitals Overseas (해외 어린이병원 외래진료부의 실내 아트리움에 적용된 치유적 계획특성 분석)

  • Seo, Jae-Yeon;Cho, Min-Jung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.9
    • /
    • pp.65-75
    • /
    • 2019
  • This study aims at analyzing the therapeutic design characteristics implemented in the indoor atriums of the outpatient areas in four children's hospitals in London and San Francisco. A mixed-method approach was used to examine the spatial configurations and design elements in the atriums, while a literature review was conducted to understand the therapeutic design characteristics relevant to atrium spaces and children's healthcare facilities. The spatial design and the pattern of use of the atrium in each hospital were studied during field visits and interviews with the hospital management staff. Based on the literature review and the observations from the field study, a Visibility Graphic Analysis was chosen to examine the visibility, accessibility, and intelligibility of the spatial configurations in the atriums of each hospital. In addition, the openness, restfulness, and vibrant ambience of the design elements in the atriums of each hospital were investigated by surveying fifty-two design professionals on the quality of the design elements in the atriums. A spatial configuration analysis, confirmed that all the atrium spaces had high visibility, accessibility, and intelligibility due to their high connectivity, integration, intelligibility, and because the atriums were laid out in the open lobby space, along the major circulation axis, or in the circulation intersection. In the survey of the design element evaluation, all atriums proved to be appropriate in terms of openness, while the adequacy of restfulness and vibrant ambience differed depending on the hospitals. Notably, location and orientation, access, natural light, outdoor view, and play facilities were found significant environmental design elements determining the successful implementation of the therapeutic design in the atriums. The observations from the aforementioned are further discussed to enhance the therapeutic design quality of atrium spaces in children's hospitals.

Fabrication and resistance heating properties of flexible SiC fiber rope as heating elements (유연한 탄화규소 섬유 로프 발열체의 제조와 저항 발열 특성)

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.258-263
    • /
    • 2020
  • Silicon carbide (SiC) fibers mainly fabricated from polycarbosilane, a ceramic precursor, are applied as reinforcing materials for ceramic matrix composites (CMCs) because of their high temperature oxidation resistance, tensile strength, and light weight. In this study, continuous SiC fibers used to fabricate rope-type flexible heating elements capable of generating high-temperature heat (> 650℃). For high-efficiency heating elements, the resistance of SiC fiber rope was measured by 2-point probe method according to the cross-sectional area and length. In addition, the fabrication conditions of rope-type SiC fiber heating elements were optimized by controlling the oxygen impurities and the size of crystal grains present in the amorphous SiC fiber. As a result, the SiC fiber heating element having a resistance range of about 100~200 Ω exhibited an excellent power consumption efficiency of 1.5 times compared to that of the carbon fiber heating element.

A Study on Ion Exchange Method for Effective Ag Doping of Sputtering-Deposited CdTe Thin Film (스퍼터링 증착한 CdTe 박막의 효과적인 Ag 도핑을 위한 이온 교환법 연구)

  • Kim, Cheol-Joan;Park, Ju-Sun;Lee, Woo-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1169-1174
    • /
    • 2011
  • CdTe thin-film solar cell technology is well known that it can theoretically improve its conversion efficiency and manufacturing costs compared to the conventional silicon solar cell technology, due to its optical band gap energy (about 1.45eV) for solar energy absorption, high light absorption capability and low cost requirements for producing solar cells. Although the prior studies obtained the high light absorption, CdTe thin film solar cell has not been come up to the sufficient efficiency yet. So, doping method was selected for the improvement of the electrical characteristics in CdTe solar cells. Some elements including Cu, Ag, Cd and Te were generally used for the p-dopant as substitutional acceptors in CdTe thin film. In this study, the sputtering-deposited CdTe thin film was immersed in $AgNO_3$ solution for ion exchange method to dope Ag ions. The effects of immersion temperature and Ag-concentration were investigated on the optical properties and electrical characteristics of CdTe thin film by using Auger electron spectroscopy depth-profile, UV-visible spectrophotometer, and a Hall effect measurement system. The best optical and electrical characteristics were sucessfully obtained by Ag doping at high temperature and concentration. The larger and more uniform diffusion of Ag ions made increase of the Ag ion density in CdTe thin film to decrease the series resistance as well as mede the faster diffusion of light by the metal ions to enhance the light absorption.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Measurement of Surfactant Concentration Using Light Scattering Method (광 산란방법을 이용한 계면활성제 농도측정)

  • Jo, Young Hyeon;Jo, Gyeong Hyeon;Jung, Chi Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.441-448
    • /
    • 2017
  • A method for measuring the concentration of surfactant in water was developed. In this technique, microbubbles were used as light scatterers. The polarization change of light scattered by microbubbles was analyzed by Mueller matrix analysis. $M_{11}$, one of the Mueller matrix elements, was found to be a key parameter inferring the surfactant concentration within the concentration range of 0 ppm to 60 ppm. The best results for this measurement were obtained when the scattering angle was $150^{\circ}$ and the extinction ratio was 56.2. This experimental result shows that the EPLS can be effectively used as a real time inspection method for water quality monitoring in lakes or rivers.

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

A Study on the Emotional design approach in the Therme Vals designed by Peter Zumthor (피터 쥼터의 썸 발즈에 나타난 감성 디자인 접근에 관한 연구)

  • Woo, Ji-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2010
  • The Therme Vals is a hotel and spa which combines a complete sensory experience designed by Peter Zumthor. This study aims to find emotional design approaches of the Therme Vals through references, observation from site visit, interview and discussion related to this topic. This space was designed for visitors to luxuriate and rediscover the ancient benefits of bathing. The combinations of light and shade, open and enclosed spaces and linear elements make for a highly sensuous and restorative experience. The study observed the emotional design characteristics of the Therme Vals through space approach, aesthetic and experiential sides. For space approach side, emotional experience in gradual process to approach the space was mentioned, for aesthetic side, mystical combination of light, stone and water was observed, for experiential side, 5 senses experience and space programing for adjusting the density of the space were observed. This study found that the spa has the quality of spiritual, soul-touching delight like religious experience. The fascination for the mystic qualities of a world of stone within the mountain, for darkness and light, for light reflections on the water or in the steam saturated air, pleasure in the unique acoustics of the bubbling water in a world of stone, the ritual of bathing-all these notions were explained in Peter Zumthor's construction details. In the result of the interview and discussion, people love the space and praised it highly for the emotional design regardless of space experience, age, sex or ethnicity. Emotional design approaches based on human nature, materiality, and memory of the places is more powerful than other emotional design ideas with technical devices, special themes, digital effects, vivid colors and shapes.

A Study on the Spatial effect of Phenomenological Light and Water in Architectural works of Steven Holl (스티븐 홀 작품에 나타난 현상학적 빛과 물의 공간작용)

  • 안우진;손광호;고성룡
    • Korean Institute of Interior Design Journal
    • /
    • no.27
    • /
    • pp.20-27
    • /
    • 2001
  • The tendency of formalization in Contemporary Architecture deeply relies on the thought of Western Philosophy, which emphasizes the art of image perceived visually but ignores the body and perception of a human beig who uses the architecture and lives in it. On the contrary, Merleau-Ponty asserted long time ago that the world and the body are inseparably related to each other. The phenomenology is important in Architecture, since the center of thought should be taken back to the human body if a artistic meaning can be obtained by Architecture. From this point of view, the meaning of Contemporary Architecture can be renewed by the phenomenological idea of Merleau-Ponty as a means of expanding thought that overcomes the limit of formalization in Contemporary Architecture. This research aims to ream from Steven Holl's work, and show the Architectural elements that are used for preceptual experience of phenomenon and the function of those element sin Architectural space of his works. The result of study on about the phenomenal light and water in Architectural space of Steven Holl is as follows; First, in perceptional experience of phenomenon, time is an important element, which is successive and make a field that cause perceptional experience. Second, light, as a phenomenological element, acted as a means of expressing the comparison and change of light and shadow in Architectural space and showing the change of color by the diversity of time in inner space. Third, water, as a phenomenal lens, not only acted functional but also functioned as an element of sensual experience in Architectural space. It acted as an image containing time, space, just like a mirror that reflect the environment.

  • PDF