• 제목/요약/키워드: ligand-independent mechanism

검색결과 10건 처리시간 0.021초

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Insulin-Like Growth Factor-I Induces Androgen Receptor Activation in Differentiating C2C12 Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.189-194
    • /
    • 2009
  • The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0-250 ng/ml) of IGF-I or for various periods of time (0-60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal ${\alpha}-actin$ and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Influence of 17β-Estradiol on 15-Deoxy-Δ12,14 Prostaglandin J2 -Induced Apoptosis in MCF-7 and MDA-MB-231 Cells

  • Yaacob, Nik Soriani;Nasir, Rabail;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6761-6767
    • /
    • 2013
  • The nuclear receptor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of $PPAR{\gamma}$, 15-deoxy-${\Delta}^{12,14}$ prostaglandin $J_2$ (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha ($ER{\alpha}$)-positive (MCF-7) and $ER{\alpha}$-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between $ER{\alpha}$ and $ER{\alpha}$, the effect of the $ER{\alpha}$ ligand, $17{\beta}$-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The $ER{\alpha}$ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances $ER{\alpha}$-independent anticancer effects of PGJ2 in the presence of its receptor.

Comparative Reverse Screening Approach to Identify Potential Anti-neoplastic Targets of Saffron Functional Components and Binding Mode

  • Bhattacharjee, Biplab;Vijayasarathy, Sandhya;Karunakar, Prashantha;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5605-5611
    • /
    • 2012
  • Background: In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. Methods: In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. Results: The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. Conclusion: This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.

Functional Gene Analysis to Identify Potential Markers Induced by Benzene in Two Different Cell Lines, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mi-Kyung;Sarma, Sailendra Nath;Choi, Han-Saem;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.183-191
    • /
    • 2008
  • Volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. And VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Benzene is the most widely used prototypical VOC and the toxic mechanisms of them are still unclear. The multi-step process of toxic mechanism can be more fully understood by characterizing gene expression changes induced in cells by toxicants. In this study, DNA microarray was used to monitor the expression levels of genes in HepG2 cells and HL-60 cells exposed to the benzene on IC20 and IC50 dose respectively. In the clustering analysis of gene expression profiles, although clusters of HepG2 and HL-60 cells by benzene were divided differently, expression pattern of many genes observed similarly. We identified 916 up-regulated genes and 1,144 down-regulated genes in HepG2 cells and also 1,002 up-regulated genes and 919 down-regulated genes in HL-60 cells. The gene ontology analysis on genes expressed by benzene in HepG2 and HL-60 cells, respectively, was performed. Thus, we found some principal pathways, such as, focal adhesion, gap junction and signaling pathway in HepG2 cells and toll-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway and neuroactive ligand-receptor interaction in HL-60 cells. And we also found 16 up-regulated and 14 down-regulated commonly expressed total 30 genes that belong in the same biological process like inflammatory response, cell cycle arrest, cell migration, transmission of nerve impulse and cell motility in two cell lines. In conclusion, we suggest that this study is meaningful because these genes regarded as strong potential biomarkers of benzene independent of cell type.

High Cytoplasmic CXCR4 Expression Predicts Prolonged Survival in Triple-Negative Breast Cancer Patients Treated with Adjuvant Chemotherapy

  • Shim, Bobae;Jin, Min-Sun;Moon, Ji Hye;Park, In Ae;Ryu, Han Suk
    • 대한병리학회지
    • /
    • 제52권6호
    • /
    • pp.369-377
    • /
    • 2018
  • Background: Chemokine receptor CXC chemokine receptor type 4 (CXCR4) and its ligand CXC motif chemokine 12 (CXCL12; stromal cell-derived factor-1) are implicated in tumor growth, metastasis, and tumor cell-microenvironment interaction. A number of studies have reported that increased CXCR4 expression is associated with worse prognosis in triple-negative breast cancer (TNBC), but its prognostic significance has not been studied in TNBC patients treated with adjuvant chemotherapy. Methods: Two hundred eighty-three TNBC patients who received adjuvant chemotherapy were retrospectively analyzed. Tissue microarray was constructed from formalin-fixed, paraffin-embedded tumor tissue and immunohistochemistry for CXCR4 and CXCL12 was performed. Expression of each marker was compared with clinicopathologic characteristics and outcome. Results: High cytoplasmic CXCR4 expression was associated with younger age (p=.008), higher histologic grade (p=.007) and lower pathologic stage (p=.045), while high CXCL12 expression was related to larger tumor size (p=.045), positive lymph node metastasis (p=.005), and higher pathologic stage (p=.017). The patients with high cytoplasmic CXCR4 experienced lower distant recurrence (p=.006) and better recurrence-free survival (RFS) (log-rank p=.020) after adjuvant chemotherapy. Cytoplasmic CXCR4 expression remained an independent factor of distant recurrence (p=.019) and RFS (p=.038) after multivariate analysis. Conclusions: High cytoplasmic CXCR4 expression was associated with lower distant recurrence and better RFS in TNBC patients treated with adjuvant chemotherapy. This is the first study to correlate high CXCR4 expression to better TNBC prognosis, and the underlying mechanism needs to be elucidated in further studies.

$p56^{lck}$ SH2 domain 결합 단백질 p62가 Jurkat T-세포주의 세포예정사에 미치는 영향 (Potential Involvement of p62, a Phosphotyrosine-independent Ligand of SH2 Domain of $p56^{lck}$, on UV-induced Apoptosis in Jurkat T-cell Line)

  • 정인실
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 1998
  • p62는 임파구에 특이적으로 발현하는 단백질 티로신 키나제인 p56$^{lck}$의 SH2 doamin과 결합하는 세포질 단백질로서 두 단백질의 결합에는 지금까지 알려진 바와 다르게 인산화된 티로신이 필요없다. p62는 기능이 다른 여러 조직에서 공통적으로 발현되며 유비퀴틴, 단백질 키나제 C 이성질체 둥 다양한 단백질과 결합하는 것이 알려져 있다. 이와 같은 현상으로 p62가 다양한 생물학적 기능을 수행할 수 있음을 예측할 수 있으나 그 자세한 기작은 잘 알려져 있지 않다. 본 연구에서는 p62가 T-세포에 특이적으로 발현하는 14-3-3 $ au$ 이성질체와 결합하는 것을 확인하였으며, p62를 인위적으로 T-세포에 다량으로 발현시키면 세포예정사 (apoptosis)의 시작이 지연되는 현상을 조사하였다. 이때 세포사멸과정에서 전형적으로 나타나는 DNA 절단현상 (DNA fragmentaion)과 poly (ADP-ribose) polymerase의 분해가 지연됨을 알 수 있었다. 최근 14-3-3 단백질이 임파구에서 세포예정사를 촉진시키는 기능을 가진 Bad와 결합함으로써 세포의 생존 신호 전달에 중요한 역할을 한다는 것이 보고된 바 있다. 따라서 본 연구의 결과는 T-세포의 활성으로 일어나는 사멸예정사 과정 중에 p62와 14-3-3 단백질에 의해 수행되는 조절 기작이 있음을 시사하고 있다.다.

  • PDF

프로게스테론의 비유전자 수준 작용 : 포유류 난소에서의 신호 전달 경로를 중심으로 (Non-Genomic Actions of Progesterone : Focussed on the Signaling Pathways in the Mammalian Ovary)

  • 이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제10권2호
    • /
    • pp.85-92
    • /
    • 2006
  • 본 논문은 포유동물 난소에서의 신속한 프로게스테론(P4) 선호 전달경로에 관해 현재 통용되는 지식을 요약하였다. P4는 안드로겐과 에스트로겐 합성 과정에서의 중요한 중간 산물이면서 그 자체로도 배란, 난포폐쇄(atresia), 황체형성과정(luteinization)에서 결정적인 역할을 하며, 모든 포유동물의 초기 임신 유지에 필수적이다. 이와 같은 생리적인 중요성에도 불구하고 포유동물 난소에서의 정확한 P4 작용기작은 아직까지도 완전히 알려져 있지 않다. 이러한 관점에서 볼 때, 비유전자 수준이면서 전사와 무관한 P4의 세포내 작용을 매개하는 수용체의 실체에 관해 오래 동안 계속된 의문과 논란은 과학적인 흥미를 유발하는 생식생리학의 주요 관심사이다. 포유류 난소에서 P4는 1) 잘 알려진 유전자 수준의 경로(genomic pathway)인 호르몬이 소위 고전적인 세포 내의 수용체에 결합하고, 이어 리간드-호르몬 복합체가 전사조절물질로 작용하여 표적 유전자 발현을 조절하거나, 2) 유전자에 직접 작용하지 않기 때문에 비유전자 수준이라 불리우는 경로(non-genomic pathway)로 작용한다. P4의 비유전자 수준 작용의 주요한 특징은 (i) 신속하고, (ii) 전사억제제에 반응하지 않고, (iii) 세포막과 연관된 물질들에 의해 신호가 전달된다. 아마도 난소에서 P4의 비유전자 수준 작용은 (a) 세포막 또는 그 근처에 위치한 고전적인 P4 수용체(PGR), (b) 세포막 프로게스틴 수용체(membrane progestin receptors; MPR $\alpha$, MPR $\beta$ and MPR $\gamma$) 패밀리, (c) progesterone receptor membrane component I(PGRMC1), 그리고 (d) serpine I mRNA binding protein(SERBP1)의 세포막 복합체에 의해 매개되는 것으로 추정된다. 포유류 난소에서의 P4 작용에 대한 완전한 이해를 위해서는 향후 많은 연구가 필요할 것이다.

  • PDF

Chromophore 형성과 rhodopsin kinase 활성을 이용한 항활성 로돕신 mutant의 분석 (Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants)

  • 김종명
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.783-790
    • /
    • 2007
  • G protein-coupled receptor, (GPCR)는 세포외부의 신호를 인식 시 G 단백질을 활성화시켜 신호를 전달하며 kinase에 의한 인산화를 통하여 지속적인 신호전달을 억제한다. 외부 신호물질이 없는 조건에서도 활성을 나타내는 항활성 돌연변이종(CAM)은 GPCR의 신호전달 이상에 기인한 질병 치료나 활성화 구조변화의 좋은 연구대상이다. 희미한 빛을 인식하는 시각수용체인 로돕신의 CAM으로는 salt bridge에 직접적인 영향을 미치는 돌연변이인 G90D, El13Q, 그리고 K296E와, 직접적인 영향이 없는 돌연변이인 E134q와 M25Y등 두 가지 계통의 종류가 알려져 있다. 본 연구에서는 각각의 돌연변이가 복합된 mutant를 구성하여 agonist와 inverse agonist에 대한친화도와 로돕신 kinase에 대한 활성을 조사하여 각 종에서의 구조변화의 차이를 분석하였다. 로돕신 mutant의constitutive activity는 all-trans-retinal에 대한 친화도에 비례하며 11-cis-retinal에 대한 친화도와는 역상관 관계를 보여준다. 같은 계통에 속하는 돌연변이가 합쳐진 복합 mutant는 단일 mutant에 비하여 미약한 정도의 로돕신 kinase 항활성화 증가를 보여주나, 다른 계통에 속하는 두 가지 돌연변이가 합쳐진 mutant는 항활성화가 크게 증가되었음을 보여주었다. 이 결과는 다른 계통에 속하는 mutant에서는 상이한 구조변화가 일어나며 로돕신이완전한 활성화에 이르기 위해서는 최소한 두 가지 종류의 돌연변이에 의하여 생기는 구조변화들이 함께 일어나야함을 의 미 한다. G protein 활성화와 유사한 항활성화 분석 결과는 rhodopsin kinase가 인식하는 로돕신의 활성화상태 구조가 G protein이 인식하는 구조와 유사함을 의미한다. 특히 가장 강한 활성을 나타내는 El13Q/E134Q/M257Y는 활성화상태 GPCR 단백질의 결정 시도에 이용 될 수 있을 것이다.